Back to Search Start Over

Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice.

Authors :
Halim, Danny
Wilson, Michael P.
Oliver, Daniel
Brosens, Erwin
Verheij, Joke B. G. M.
Yu Han
Nanda, Vivek
Qing Lyu
Doukas, Michael
Stoop, Hans
Brouwer, Rutger W. W.
van IJcken, Wilfred F. J.
Slivano, Orazio J.
Burns, Alan J.
Christie, Christine K.
de Mesy Bentley, Karen L.
Brooks, Alice S.
Tibboel, Dick
Suowen Xu
Zheng Gen Jin
Source :
Proceedings of the National Academy of Sciences of the United States of America; 3/28/2017, Vol. 114 Issue 13, pE2739-E2747, 9p, 3 Color Photographs, 2 Black and White Photographs, 1 Diagram, 2 Graphs
Publication Year :
2017

Abstract

Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a congenital visceral myopathy characterized by severe dilation of the urinary bladder and defective intestinal motility. The genetic basis of MMIHS has been ascribed to spontaneous and autosomal dominant mutations in actin gamma 2 (ACTG2), a smooth muscle contractile gene. However, evidence suggesting a recessive origin of the disease also exists. Using combined homozygosity mapping and whole exome sequencing, a genetically isolated family was found to carry a premature termination codon in Leiomodin1 (LMOD1), a gene preferentially expressed in vascular and visceral smooth muscle cells. Parents heterozygous for the mutation exhibited no abnormalities, but a child homozygous for the premature termination codon displayed symptoms consistent with MMIHS. We used CRISPR-Cas9 (CRISPR-associated protein) genome editing of Lmod1 to generate a similar premature termination codon. Mice homozygous for the mutation showed loss of LMOD1 protein and pathology consistent with MMIHS, including late gestation expansion of the bladder, hydronephrosis, and rapid demise after parturition. Loss of LMOD1 resulted in a reduction of filamentous actin, elongated cytoskeletal dense bodies, and impaired intestinal smooth muscle contractility. These results define LMOD1 as a disease gene for MMIHS and suggest its role in establishing normal smooth muscle cytoskeletal–contractile coupling. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
114
Issue :
13
Database :
Complementary Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
122308355
Full Text :
https://doi.org/10.1073/pnas.1620507114