Back to Search
Start Over
Low temperature thermal ALD of a SiNx interfacial diffusion barrier and interface passivation layer on SixGe1- x(001) and SixGe1- x(110).
- Source :
- Journal of Chemical Physics; 2017, Vol. 146 Issue 5, p1-12, 12p, 2 Diagrams, 8 Graphs
- Publication Year :
- 2017
-
Abstract
- Atomic layer deposition of a silicon rich SiN<subscript>x</subscript> layer on Si<subscript>0.7</subscript>Ge<subscript>0.3</subscript>(001), Si<subscript>0.5</subscript>Ge<subscript>0.5</subscript>(001), and Si<subscript>0.5</subscript>Ge<subscript>0.5</subscript>(110) surfaces has been achieved by sequential pulsing of Si<subscript>2</subscript>Cl<subscript>6</subscript> and N<subscript>2</subscript>H<subscript>4</subscript> precursors at a substrate temperature of 285 °C. XPS spectra show a higher binding energy shoulder peak on Si 2p indicative of SiO<subscript>x</subscript>N<subscript>y</subscript>Cl<subscript>z</subscript>bonding while Ge 2p and Ge 3d peaks show only a small amount of higher binding energy components consistent with only interfacial bonds, indicating the growth of SiO<subscript>x</subscript>N<subscript>y</subscript> on the SiGe surface with negligible subsurface reactions. Scanning tunneling spectroscopy measurements confirm that the SiN<subscript>x</subscript>interfacial layer forms an electrically passive surface on p-type Si<subscript>0.70</subscript>Ge<subscript>0.30</subscript>(001), Si<subscript>0.50</subscript>Ge<subscript>0.50</subscript>(110), and Si<subscript>0.50</subscript>Ge<subscript>0.50</subscript>(001) substrates as the surface Fermi level is unpinned and the electronic structure is free of states in the band gap. DFT calculations show that a Si rich a-SiO<subscript>0.4</subscript>N<subscript>0,4</subscript> interlayer can produce lower interfacial defect density than stoichiometric a-SiO<subscript>0.8</subscript>N<subscript>0.8</subscript>, substoichiometric a-Si<subscript>3</subscript>N<subscript>2</subscript>, or stoichiometric a-Si<subscript>3</subscript>N<subscript>4</subscript> interlayers by minimizing strain and bond breaking in the SiGe by the interlayer. Metal-oxide-semiconductor capacitors devices were fabricated on p-type Si<subscript>0.7</subscript>Ge<subscript>0.3</subscript>(001) and Si<subscript>0.5</subscript>Ge<subscript>0.5</subscript>(001) substrates with and without the insertion of an ALD SiO<subscript>x</subscript>N<subscript>y</subscript> interfacial layer, and the SiO<subscript>x</subscript>N<subscript>y</subscript>layer resulted in a decrease in interface state density near midgap with a comparable C<subscript>max</subscript> value. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219606
- Volume :
- 146
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Journal of Chemical Physics
- Publication Type :
- Academic Journal
- Accession number :
- 121205010
- Full Text :
- https://doi.org/10.1063/1.4975081