Back to Search Start Over

Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II. Radii, Masses, and Ages.

Authors :
Víctor Silva Aguirre
Jørgen Christensen-Dalsgaard
Anders B. Justesen
Jakob R. Mosumgaard
Rasmus Handberg
Günter Houdek
Hans Kjeldsen
Timothy R. White
Timothy R. Bedding
Daniel Huber
Mikkel N. Lund
William J. Chaplin
Guy R. Davies
Daniel R. Reese
Kuldeep Verma
Luca Casagrande
David W. Latham
Hugo R. Coelho
Andrea Miglio
Ben Rendle
Source :
Astrophysical Journal; 2/1/2017, Vol. 835 Issue 2, p1-1, 1p
Publication Year :
2017

Abstract

We use asteroseismic data from the Kepler satellite to determine fundamental stellar properties of the 66 main-sequence targets observed for at least one full year by the mission. We distributed tens of individual oscillation frequencies extracted from the time series of each star among seven modeling teams who applied different methods to determine radii, masses, and ages for all stars in the sample. Comparisons among the different results reveal a good level of agreement in all stellar properties, which is remarkable considering the variety of codes, input physics, and analysis methods employed by the different teams. Average uncertainties are of the order of ∼2% in radius, ∼4% in mass, and ∼10% in age, making this the best-characterized sample of main-sequence stars available to date. Our predicted initial abundances and mixing-length parameters are checked against inferences from chemical enrichment laws ΔY/ΔZ and predictions from 3D atmospheric simulations. We test the accuracy of the determined stellar properties by comparing them to the Sun, angular diameter measurements, Gaia parallaxes, and binary evolution, finding excellent agreement in all cases and further confirming the robustness of asteroseismically determined physical parameters of stars when individual frequencies of oscillation are available. Baptised as the Kepler dwarfs LEGACY sample, these stars are the solar-like oscillators with the best asteroseismic properties available for at least another decade. All data used in this analysis and the resulting stellar parameters are made publicly available for the community. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0004637X
Volume :
835
Issue :
2
Database :
Complementary Index
Journal :
Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
121081620
Full Text :
https://doi.org/10.3847/1538-4357/835/2/173