Back to Search Start Over

Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure-Activity Relationships and Receptor Modeling.

Authors :
Yating Cheng
Un-Ho Jin
Davidson, Laurie A.
Chapkin, Robert S.
Jayaraman, Arul
Tamamis, Phanourios
Orr, Asuka
Allred, Clint
Denison, Michael S.
Soshilov, Anatoly
Weaver, Evelyn
Safe, Stephen
Source :
Toxicological Sciences; Feb2017, Vol. 155 Issue 2, p458-473, 16p, 1 Diagram, 2 Charts, 7 Graphs
Publication Year :
2017

Abstract

1,4-Dihydroxy-2-naphthoic acid (1,4-DHNA) is a bacterial-derivedmetabolite that binds the aryl hydrocarbon receptor (AhR) and exhibits anti-inflammatory activity in the gut. The structure-dependent AhR activity of hydroxyl/carboxy-substituted naphthoic acids (NAs)was determined in young adultmouse colonic (YAMC) cells and human Caco2 colon cancer cells using CYP1A1/CYP1B1mRNAs asAh-responsive genes. Compounds used in this study include 1,4-, 3,5-, and 3,7-DHNA, 1,4-dimethoxy-2-naphthoic acid (1,4-DMNA), 1- and 4-hydroxy-2-naphthoic acid (1-HNA, 4-HNA), 1- and 2-naphthoic acid (1-NA, 2-NA), and 1- and 2-naphthol (1-NOH, 2-NOH). 1,4-DHNAwas themost potent compoundamong hydroxyl/carboxy naphthalene derivatives, and the fold induction response for CYP1A1 and CYP1B1was similar to that observed for 2,3,7,8-tetrachlorodibenzop-dioxin (TCDD) in YAMC and Caco2 cells. 1- and 4-HNA were less potent than 1,4-DHNA but inducedmaximal (TCDD-like) response for CYP1B1 (both cell lines) and CYP1A1 (Caco2 cells).With the exception of 1- and 2-NA, all compounds significantly induced Cyp1b1 inYAMCcells and these responseswere not observed in AhR-deficient YAMC cells generated using CRISPR/ Cas9 technology. In addition, we also observed that 1- and 2-NOH(and 1,4-DHNA)wereweakAhR agonists, and 1- and 2-NOH also exhibited partialAhR antagonist activity. Structure-activity relationship studies for CYP1A1 but not CYP1B1were similar in both cell lines, and CYP1A1 induction required one or both 1,4-dihydroxy substituents and activitywas significantly enhanced by the 2-carboxyl group. We also used computational analysis to showthat 1,4-DHNAand TCDDshare similar interactions within the AhR binding pocket and differ primarily due to the negatively charged group of 1,4-DHNA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10966080
Volume :
155
Issue :
2
Database :
Complementary Index
Journal :
Toxicological Sciences
Publication Type :
Academic Journal
Accession number :
120975702
Full Text :
https://doi.org/10.1093/toxsci/kfw230