Back to Search
Start Over
A new theorem on the prime-counting function.
- Source :
- Ramanujan Journal; Jan2017, Vol. 42 Issue 1, p59-67, 9p
- Publication Year :
- 2017
-
Abstract
- For $$x>0$$ , let $$\pi (x)$$ denote the number of primes not exceeding x. For integers a and $$m>0$$ , we determine when there is an integer $$n>1$$ with $$\pi (n)=(n+a)/m$$ . In particular, we show that, for any integers $$m>2$$ and $$a\leqslant \lceil e^{m-1}/(m-1)\rceil $$ , there is an integer $$n>1$$ with $$\pi (n)=(n+a)/m$$ . Consequently, for any integer $$m>4$$ , there is a positive integer n with $$\pi (mn)=m+n$$ . We also pose several conjectures for further research; for example, we conjecture that, for each $$m=1,2,3,\ldots $$ , there is a positive integer n such that $$m+n$$ divides $$p_m+p_n$$ , where $$p_k$$ denotes the k-th prime. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 13824090
- Volume :
- 42
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Ramanujan Journal
- Publication Type :
- Academic Journal
- Accession number :
- 120533267
- Full Text :
- https://doi.org/10.1007/s11139-015-9702-z