Back to Search
Start Over
Maximally Using GPS Observation for Water Vapor Tomography.
- Source :
- IEEE Transactions on Geoscience & Remote Sensing; Dec2016, Vol. 54 Issue 12, p7185-7196, 12p
- Publication Year :
- 2016
-
Abstract
- GPS-based water vapor tomography has been proved to be a cost-effective means of obtaining spatial and temporal distribution of atmospheric water vapor. In previous studies, the tomography height is empirically selected without considering the actual characteristics of the local water vapor distribution, and most existing studies only consider the signals passing from the top boundary of the tomography area. Therefore, the observed signals coming out from the side face of the tomography area are excluded as ineffective information, which not only reduces the utilization rate of signals used but also decreases the number of voxels crossed by rays. This becomes the research point of this paper, which studies the possibility of selecting a reasonable tomography boundary and using signals passing from the side face of the tomography area. This paper first tries to determine the tomography height based on the local atmospheric physical property using many years of radiosonde data, and 8 km is selected as the tomography boundary in Hong Kong. The second part focuses on superimposing the signals penetrating from the side face of the tomography area to tomography modeling by introducing a scale factor that is able to determine the water vapor content of each signal with the part that belongs in the tomography area. Finally, a tomography experiment is carried out based on data provided by the Satellite Positioning Reference Station Network (SatRef) in Hong Kong to validate the proposed method. Experimental result demonstrates that the utilization rate of the signal used and the number of voxels crossed by rays are both increased by 30.32% and 12.62%, respectively. The comparison of tomographic integrated water vapor (IWV) derived from different schemes with that from radiosonde and ECMWF data shows that the RMS error of the proposed method (4.1 and 5.1 mm) is smaller than that of the previous method (5.1 and 5.6 mm). In addition, the tomographic water vapor densities derived from different schemes is also compared with those of by radiosonde and ECMWF; the statistical result over the experimental period shows that the proposed method has an average RMS error of 1.23 and 2.12 g/m3, respectively, which is superior to the previous method at 1.60 and 2.43 g/m3, respectively. [ABSTRACT FROM PUBLISHER]
- Subjects :
- WATER vapor
TOMOGRAPHY
RADIOSONDES
GLOBAL Positioning System
Subjects
Details
- Language :
- English
- ISSN :
- 01962892
- Volume :
- 54
- Issue :
- 12
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Geoscience & Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 120288859
- Full Text :
- https://doi.org/10.1109/TGRS.2016.2597241