Back to Search Start Over

Beyond designed functional margins in CANDU type NPP. Radioactive nuclei assessment in an LOCA type accident.

Authors :
Budu, Andrei Razvan
Pavel, Gabriel Lazaro
Source :
EPJ Nuclear Sciences & Technologies; 2015, Vol. 1, p1-7, 7p
Publication Year :
2015

Abstract

European Union's energy roadmap up to year 2050 states that in order to have an efficient and sustainable economy, with minimum or decreasing greenhouse gas emissions, along with use of renewable resources, each constituent state has the option for nuclear energy production as one desirable option. Every scenario considered for tackling climate change issues, along with security of supply positions the nuclear energy as a recommended option, an option that is highly competitive with respect to others. Nuclear energy, along with other renewable power sources are considered to be the main pillars in the energy sector for greenhouse gas emission mitigation at European level. European Union considers that nuclear energy must be treated as a highly recommended option since it can contribute to security of energy supply. Romania showed excellent track-records in operating in a safe and economically sound manner of Cernavoda NPP Units 1&2. Both Units are in top 10 worldwide in terms of capacity factor. Due to Romania's need to ensure the security of electricity supply, to meet the environmental targets and to move to low carbon generation technologies, Cernavoda Units 3&4 Project appears as a must. This Project was started in 2010 and it is expected to have the Units running by 2025. Cost effective and safety operation of a Nuclear Power Plant is made taking into consideration functional limits of its equipment. As common practice, every nuclear reactor type (technology used) is tested according to the worse credible accident or equipment failure that can occur. For CANDU type reactor, this is a Loss of Cooling Accident (LOCA). In a LOCA type accident in a CANDU NPP, using RELAP/SCDAP code for fuel bundle damage assessment the radioactive nuclei are to be quantified. Recently, CANDU type NPP accidents are studied using the RELAP/SCDAP code only. The code formerly developed for PWR type reactors was adapted for the CANDU geometry and can assess the accident progression consequences up to a certain point. The code assesses the fuel bundle damage progression, but cannot assess further core damage for a CANDU type core, and starting from these data the amount of damaged fuel can be calculated. The radio nuclei present in the damaged fuel are supposed to be released into the main heat transport system and after that into the containment building in the worst case scenario. Assessing the radioactive nuclei maximum release is the purpose of the present paper. The radioactive nuclei release is needed for the accident management plan, limiting the environmental and population impact of the supposed accident, and furthermore for a later site remediation plan that can be put in action after the complete mitigation of the accident consequences. The maximum quantity of radio nuclei released during the accident calculated in this paper is a worst case scenario evaluation that can lead to better preparedness in an accident scenario. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
24919292
Volume :
1
Database :
Complementary Index
Journal :
EPJ Nuclear Sciences & Technologies
Publication Type :
Academic Journal
Accession number :
119639773
Full Text :
https://doi.org/10.1051/epjn/e2015-50017-8