Back to Search
Start Over
Affinity Selection of FGF2-Binding Heparan Sulfates for Ex Vivo Expansion of Human Mesenchymal Stem Cells.
- Source :
- Journal of Cellular Physiology; Mar2017, Vol. 232 Issue 3, p566-575, 10p
- Publication Year :
- 2017
-
Abstract
- The future of human mesenchymal stem cells (hMSCs) as a successful cell therapy relies on bioprocessing strategies to improve the scalability of these cells without compromising their therapeutic ability. The culture-expansion of hMSCs can be enhanced by supplementation with growth factors, particularly fibroblast growth factor 2 (FGF2). The biological activity of FGF2 is controlled through interactions with heparan sulfate (HS) that facilitates ligand-receptor complex formation. We previously reported on an FGF2-interacting HS variant (termed HS2) isolated from embryonic tissue by anionic exchange chromatography that increased the proliferation and potency of hMSCs. Here, we detail the isolation of an FGF2 affinity-purified HS variant (HS8) using a scalable platform technology previously employed to generate HS variants with increased affinity for BMP-2 or VEGF<subscript>165</subscript>. This process used a peptide sequence derived from the heparin-binding domain of FGF2 as a substrate to affinity-isolate HS8 from a commercially available source of porcine mucosal HS. Our data show that HS8 binds to FGF2 with higher affinity than to FGF1, FGF7, BMP2, PDGF-BB, or VEGF<subscript>165</subscript>. Also, HS8 protects FGF2 from thermal destabilization and increases FGF signaling and hMSC proliferation through FGF receptor 1. Long-term supplementation of cultures with HS8 increased both hMSC numbers and their colony-forming efficiency without adversely affecting the expression of hMSC-related cell surface antigens. This strategy further exemplifies the utility of affinity-purifying HS variants against particular ligands important to the stem cell microenvironment and advocates for their addition as adjuvants for the culture-expansion of hMSCs destined for cellular therapy. J. Cell. Physiol. 232: 566-575, 2017. © 2016 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00219541
- Volume :
- 232
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Journal of Cellular Physiology
- Publication Type :
- Academic Journal
- Accession number :
- 119533613
- Full Text :
- https://doi.org/10.1002/jcp.25454