Back to Search
Start Over
On the Poisson Transform on the bounded domain of type IV.
- Source :
- Palestine Journal of Mathematics; 2017, Vol. 6 Issue 1, p133-141, 9p
- Publication Year :
- 2017
-
Abstract
- Let D be the Lie ball in C<superscript>2</superscript> and let A′(S) be the space of all hyperfunctions over the Shilov boundary S of D. The aim of this paper is to give a necessary and sufficient condition on the Poisson transform P<subscript>λ</subscript>f of an element f in the space A′(S) for f to be in L<superscript>2</superscript>(S). More precisely, we establish for any λ … R\{0} that: (i) Let F = P<subscript>λ</subscript>f, f … L<superscript>2</superscript>(S). Then we have ||F||<superscript>2</superscript><subscript>*</subscript> = sup <subscript> t>0</subscript> 1/t<superscript>2</superscript> ∫<subscript>0</subscript><superscript>t</superscript> (∫<superscript>r1</superscript><subscript>0</subscript> ∫<subscript>S(O(2)×O(2))</subscript> |F(ka<subscript>R</subscript>.0)|<superscript>2</superscript> sinh (r<subscript>1</subscript> - r<subscript>2</subscript>) sinh (r<subscript>1</subscript> + r<subscript>2</subscript>) dkdr<subscript>2</subscript>)dr<subscript>1</subscript> < ∞. (ii) Let f be a hyperfunction on S such that its image F = P<subscript>λ</subscript>f satisfies the growth condition ||F||<subscript>*</subscript> < ∞, then necessarily such f is in L<superscript>2</superscript>(S). [ABSTRACT FROM AUTHOR]
- Subjects :
- HYPERFUNCTIONS
POISSON algebras
Subjects
Details
- Language :
- English
- ISSN :
- 22195688
- Volume :
- 6
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Palestine Journal of Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- 119218438