Back to Search Start Over

On the Poisson Transform on the bounded domain of type IV.

Authors :
Wassouli, Fouzia. El
Source :
Palestine Journal of Mathematics; 2017, Vol. 6 Issue 1, p133-141, 9p
Publication Year :
2017

Abstract

Let D be the Lie ball in C<superscript>2</superscript> and let A′(S) be the space of all hyperfunctions over the Shilov boundary S of D. The aim of this paper is to give a necessary and sufficient condition on the Poisson transform P<subscript>λ</subscript>f of an element f in the space A′(S) for f to be in L<superscript>2</superscript>(S). More precisely, we establish for any λ … R\{0} that: (i) Let F = P<subscript>λ</subscript>f, f … L<superscript>2</superscript>(S). Then we have ||F||<superscript>2</superscript><subscript>*</subscript> = sup <subscript> t>0</subscript> 1/t<superscript>2</superscript> ∫<subscript>0</subscript><superscript>t</superscript> (∫<superscript>r1</superscript><subscript>0</subscript> ∫<subscript>S(O(2)×O(2))</subscript> |F(ka<subscript>R</subscript>.0)|<superscript>2</superscript> sinh (r<subscript>1</subscript> - r<subscript>2</subscript>) sinh (r<subscript>1</subscript> + r<subscript>2</subscript>) dkdr<subscript>2</subscript>)dr<subscript>1</subscript> < ∞. (ii) Let f be a hyperfunction on S such that its image F = P<subscript>λ</subscript>f satisfies the growth condition ||F||<subscript>*</subscript> < ∞, then necessarily such f is in L<superscript>2</superscript>(S). [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
HYPERFUNCTIONS
POISSON algebras

Details

Language :
English
ISSN :
22195688
Volume :
6
Issue :
1
Database :
Complementary Index
Journal :
Palestine Journal of Mathematics
Publication Type :
Academic Journal
Accession number :
119218438