Back to Search
Start Over
Multi-asset portfolio optimization and out-of-sample performance: an evaluation of Black–Litterman, mean-variance, and naïve diversification approaches.
- Source :
- European Journal of Finance; Jan2017, Vol. 23 Issue 1, p1-30, 30p
- Publication Year :
- 2017
-
Abstract
- The Black–Litterman model aims to enhance asset allocation decisions by overcoming the problems of mean-variance portfolio optimization. We propose a sample-based version of the Black–Litterman model and implement it on a multi-asset portfolio consisting of global stocks, bonds, and commodity indices, covering the period from January 1993 to December 2011. We test its out-of-sample performance relative to other asset allocation models and find that Black–Litterman optimized portfolios significantly outperform naïve-diversified portfolios (1/Nrule and strategic weights), and consistently perform better than mean-variance, Bayes–Stein, and minimum-variance strategies in terms of out-of-sample Sharpe ratios, even after controlling for different levels of risk aversion, investment constraints, and transaction costs. The BL model generates portfolios with lower risk, less extreme asset allocations, and higher diversification across asset classes. Sensitivity analyses indicate that these advantages are due to more stable mixed return estimates that incorporate the reliability of return predictions, smaller estimation errors, and lower turnover. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 1351847X
- Volume :
- 23
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- European Journal of Finance
- Publication Type :
- Academic Journal
- Accession number :
- 119092550
- Full Text :
- https://doi.org/10.1080/1351847X.2014.953699