Back to Search
Start Over
Upper-bound limit analysis on seismic rotational stability of retaining wall.
- Source :
- KSCE Journal of Civil Engineering; Nov2016, Vol. 20 Issue 7, p2664-2669, 6p
- Publication Year :
- 2016
-
Abstract
- This paper proposed a theoretical model of seismic rotational stability of gravity retaining wall, using the multi-block upper-bound method. In this model, the cohesionless backfill in the failure zone was meshed into an infinite number of rigid blocks parallel to planar failure surface, in order to establish the energy dissipation equation of the wall-soil system based on the kinematically admissible velocity field. The critical acceleration due to earthquake-induced pseudo-static inertial force was derived through the energy dissipation equation. The model explicitly took account of the height, shape, and unit weight of the retaining wall, the properties of the backfill soil (i.e., unit weight and angle of shearing resistance) and the friction angle of the wall-soil interface. The proposed upper-bound solutions are consistent with those obtained by the limit equilibrium theory by Zeng and Steedman (2000), whereas in this method the vector of earth pressure need not to be assumed. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 12267988
- Volume :
- 20
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- KSCE Journal of Civil Engineering
- Publication Type :
- Academic Journal
- Accession number :
- 118688012
- Full Text :
- https://doi.org/10.1007/s12205-016-0471-z