Back to Search Start Over

E2F1 Orchestrates Transcriptomics and Oxidative Metabolism in Wharton’s Jelly-Derived Mesenchymal Stem Cells from Growth-Restricted Infants.

Authors :
Tan, Peck Yean
Chang, Cheng Wei
Duan, Kaibo
Poidinger, Michael
Ng, Kai Lyn
Chong, Yap Seng
Gluckman, Peter D.
Stünkel, Walter
Source :
PLoS ONE; 9/15/2016, Vol. 11 Issue 9, p1-23, 23p
Publication Year :
2016

Abstract

Wharton’s jelly-derived Mesenchymal Stem Cells (MSCs) isolated from newborns with intrauterine fetal growth restriction were previously shown to exert anabolic features including insulin hypersensitivity. Here, we extend these observations and demonstrate that MSCs from small for gestational age (SGA) individuals have decreased mitochondrial oxygen consumption rates. Comparing normally grown and SGA MSCs using next generation sequencing studies, we measured global transcriptomic and epigenetic profiles and identified E2F1 as an over-expressed transcription factor regulating oxidative metabolism in the SGA group. We further show that E2F1 regulates the differential transcriptome found in SGA derived MSCs and is associated with the activating histone marks H3K27ac and H3K4me3. One of the key genes regulated by E2F1 was found to be the fatty acid elongase ELOVL2, a gene involved in the endogenous synthesis of docosahexaenoic acid (DHA). Finally, we shed light on how the E2F1-ELOVL2 pathway may alter oxidative respiration in the SGA condition by contributing to the maintenance of cellular metabolic homeostasis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
9
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
118113348
Full Text :
https://doi.org/10.1371/journal.pone.0163035