Back to Search Start Over

Ultra Low Dose CT Pulmonary Angiography with Iterative Reconstruction.

Authors :
Sauter, Andreas
Koehler, Thomas
Fingerle, Alexander A.
Brendel, Bernhard
Richter, Vivien
Rasper, Michael
Rummeny, Ernst J.
Noël, Peter B.
Münzel, Daniela
Source :
PLoS ONE; 9/9/2016, Vol. 11 Issue 9, p1-12, 12p
Publication Year :
2016

Abstract

Objective: Evaluation of a new iterative reconstruction algorithm (IMR) for detection/rule-out of pulmonary embolism (PE) in ultra-low dose computed tomography pulmonary angiography (CTPA). Methods: Lower dose CT data sets were simulated based on CTPA examinations of 16 patients with pulmonary embolism (PE) with dose levels (DL) of 50%, 25%, 12.5%, 6.3% or 3.1% of the original tube current setting. Original CT data sets and simulated low-dose data sets were reconstructed with three reconstruction algorithms: the standard reconstruction algorithm “filtered back projection” (FBP), the first generation iterative reconstruction algorithm iDose and the next generation iterative reconstruction algorithm “Iterative Model Reconstruction” (IMR). In total, 288 CTPA data sets (16 patients, 6 tube current levels, 3 different algorithms) were evaluated by two blinded radiologists regarding image quality, diagnostic confidence, detectability of PE and contrast-to-noise ratio (CNR). Results: iDose and IMR showed better detectability of PE than FBP. With IMR, sensitivity for detection of PE was 100% down to a dose level of 12.5%. iDose and IMR showed superiority to FBP regarding all characteristics of subjective (diagnostic confidence in detection of PE, image quality, image noise, artefacts) and objective image quality. The minimum DL providing acceptable diagnostic performance was 12.5% (= 0.45 mSv) for IMR, 25% (= 0.89 mSv) for iDose and 100% (= 3.57 mSv) for FBP. CNR was significantly (p < 0.001) improved by IMR compared to FBP and iDose at all dose levels. Conclusion: By using IMR for detection of PE, dose reduction for CTPA of up to 75% is possible while maintaining full diagnostic confidence. This would result in a mean effective dose of approximately 0.9 mSv for CTPA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
9
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
117993952
Full Text :
https://doi.org/10.1371/journal.pone.0162716