Back to Search Start Over

Comparative Multifractal Analysis of Dynamic Infrared Thermograms and X-Ray Mammograms Enlightens Changes in the Environment of Malignant Tumors.

Authors :
Gerasimova-Chechkina, Evgeniya
Toner, Brian
Marin, Zach
Audit, Benjamin
Roux, Stephane G.
Argoul, Francoise
Khalil, Andre
Gileva, Olga
Naimark, Oleg
Arneodo, Alain
Bartsch, Ronny P.
Liu, Kang K. L.
Source :
Frontiers in Physiology; 8/9/2016, p1-15, 15p
Publication Year :
2016

Abstract

There is growing evidence that the microenvironment surrounding a tumor plays a special role in cancer development and cancer therapeutic resistance. Tumors arise from the dysregulation and alteration of both the malignant cells and their environment. By providing tumor-repressing signals, the microenvironment can impose and sustain normal tissue architecture. Once tissue homeostasis is lost, the altered microenvironment can create a niche favoring the tumorigenic transformation process. A major challenge in early breast cancer diagnosis is thus to show that these physiological and architectural alterations can be detected with currently used screening techniques. In a recent study, we used a 1D wavelet-based multi-scale method to analyze breast skin temperature temporal fluctuations collected with an IR thermography camera in patients with breast cancer. This study reveals that the multifractal complexity of temperature fluctuations superimposed on cardiogenic and vasomotor perfusion oscillations observed in healthy breasts is lost in malignant tumor foci in cancerous breasts. Here we use a 2D wavelet-based multifractal method to analyze the spatial fluctuations of breast density in the X-ray mammograms of the same panel of patients. As compared to the long-range correlations and anti-correlations in roughness fluctuations, respectively observed in dense and fatty breast areas, some significant change in the nature of breast density fluctuations with some clear loss of correlations is detected in the neighborhood of malignant tumors. This attests to some architectural disorganization that may deeply affect heat transfer and related thermomechanics in breast tissues, corroborating the change to homogeneous monofractal temperature fluctuations recorded in cancerous breasts with the IR camera. These results open new perspectives in computer-aided methods to assist in early breast cancer diagnosis. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1664042X
Database :
Complementary Index
Journal :
Frontiers in Physiology
Publication Type :
Academic Journal
Accession number :
117376512
Full Text :
https://doi.org/10.3389/fphys.2016.00336