Back to Search
Start Over
Reduction of Quartz to Silicon Monoxide by Methane-Hydrogen Mixtures.
- Source :
- Metallurgical & Materials Transactions. Part B; Aug2016, Vol. 47 Issue 4, p2197-2204, 8p
- Publication Year :
- 2016
-
Abstract
- The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO to SiO by methane starts with adsorption and dissociation of CH on the silica surface. The high carbon activity in the CH-H gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH-H gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking. [ABSTRACT FROM AUTHOR]
- Subjects :
- QUARTZ
SILICON oxide
CHEMICAL reduction
METHANE
GAS mixtures
X-ray diffraction
Subjects
Details
- Language :
- English
- ISSN :
- 10735615
- Volume :
- 47
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Metallurgical & Materials Transactions. Part B
- Publication Type :
- Academic Journal
- Accession number :
- 116645153
- Full Text :
- https://doi.org/10.1007/s11663-016-0670-5