Back to Search Start Over

Reduction of Quartz to Silicon Monoxide by Methane-Hydrogen Mixtures.

Authors :
Li, Xiang
Zhang, Guangqing
Tronstad, Ragnar
Ostrovski, Oleg
Source :
Metallurgical & Materials Transactions. Part B; Aug2016, Vol. 47 Issue 4, p2197-2204, 8p
Publication Year :
2016

Abstract

The reduction of quartz was studied isothermally in a fluidized bed reactor using continuously flowing methane-hydrogen gas mixture in the temperature range from 1623 K to 1773 K (1350 °C to 1500 °C). The CO content in the off-gas was measured online using an infrared gas analyzer. The main phases of the reduced samples identified by XRD analysis were quartz and cristobalite. Significant weight loss in the reduction process indicated that the reduction products were SiO and CO. Reduction of SiO to SiO by methane starts with adsorption and dissociation of CH on the silica surface. The high carbon activity in the CH-H gas mixture provided a strongly reducing condition. At 1623 K (1350 °C), the reduction was very slow. The rate and extent of reduction increased with the increasing temperature to 1723 K (1450 °C). A further increase in temperature to 1773 K (1500 °C) resulted in a decrease in the rate and extent of reduction. An increase in the gas flow rate from 0.4 to 0.8 NL/min and an increase in the methane content in the CH-H gas mixture from 0 to 5 vol pct facilitated the reduction. Methane content in the gas mixture should be maintained at less than 5 vol pct in order to suppress methane cracking. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10735615
Volume :
47
Issue :
4
Database :
Complementary Index
Journal :
Metallurgical & Materials Transactions. Part B
Publication Type :
Academic Journal
Accession number :
116645153
Full Text :
https://doi.org/10.1007/s11663-016-0670-5