Back to Search Start Over

A Novel Cross-Layer Framework for Early-Stage Power Delivery and Architecture Co-Exploration.

Authors :
Cheng Zhuo
Unda, Kassan
Yiyu Shi
Wei-Kai Shih
Source :
DAC: Annual ACM/IEEE Design Automation Conference; Jun2016, p416-421, 6p
Publication Year :
2016

Abstract

With the reduced noise margin brought by relentless technology scaling, power integrity assurance has become more challenging than ever. On the other hand, traditional design methodologies typically focus on a single design layer without much cross-layer interaction, potentially introducing unnecessary guard-band and wasting significant design resources. Both issues imperatively call for a cross-layer framework for the co-exploration of power delivery (PD) and system architecture, especially at early design stage with larger design freedom. Unfortunately, such a framework does not exist yet in the literature. As a step forward, this paper provides a run-time simulation framework of both PD and architecture and captures their interactions. Enabled by the proposed recursive run-time PD model, it handles an entire PD system on-the-fly simulation with <1% deviation from SPICE. Moreover, with a seamless interaction among architecture, power and PD simulators, it has the capability to simulate benchmarks with millions of cycles within reasonable time. A support vector regression (SVR) model is employed to further speed up power estimation of functional units to millions cycle/second with good accuracy. The experimental results of running PARSEC suite have illustrated the framework's capability to explore hardware configurations to discover the co-effect of PD and architecture for early stage optimization. Moreover, it also illustrates multiple over-pessimisms in traditional methodologies. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0738100X
Database :
Complementary Index
Journal :
DAC: Annual ACM/IEEE Design Automation Conference
Publication Type :
Conference
Accession number :
116210563
Full Text :
https://doi.org/10.1145/2897937.2897969