Back to Search
Start Over
On the absence of positive eigenvalues of Schrödinger operators with rough potentials.
- Source :
- Geometric & Functional Analysis; Oct2003, Vol. 13 Issue 5, p1029-1081, 53p
- Publication Year :
- 2003
-
Abstract
- We prove the absence of positive eigenvalues of Schrödinger operators $ H=-\Delta+V $ on Euclidean spaces $ \mathbb{R}^n $ for a certain class of rough potentials $V$. To describe our class of potentials fix an exponent $q\in[n/2,\infty]$ (or $q\in(1,\infty]$, if $n=2$) and let $\beta(q)=(2q-n)/(2q)$. For the potential $V$ we assume that $V\in L^{n/2}_{{\rm{loc}}}(\mathbb{R}^n)$ (or $V\in L^{r}_{{\rm{loc}}}(\mathbb{R}^n)$, $r>1$, if $n=2$) and $\begin{equation*}$ $\lim_{R\to\infty}R^{\beta(q)}||V||_{L^q(R\leq |x|\leq 2R)}=0\,.$ $\end{equation*}$ Under these assumptions we prove that the operator $H$ does not admit positive eigenvalues. The case $q=\infty$ was considered by Kato [K]. The absence of positive eigenvalues follows from a uniform Carleman inequality of the form $\begin{equation*}$ $||W_m u||_{l^a(L^{p?(q)})(\mathbb R^n)}\leq C_q||W_m|x|^{\beta(q)}(\Delta+1)u||_{l^a(L^{p(q)})(\mathbb{R}^n)}$ $\end{equation*}$ for all smooth compactly supported functions $u$ and a suitable sequence of weights $W_m$, where $p(q)$ and $p?(q)$ are dual exponents with the property that $1/p(q)-1/p?(q)=1/q$. [ABSTRACT FROM AUTHOR]
- Subjects :
- EIGENVALUES
SCHRODINGER operator
EXPONENTS
MATHEMATICAL inequalities
Subjects
Details
- Language :
- English
- ISSN :
- 1016443X
- Volume :
- 13
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Geometric & Functional Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 11570557