Back to Search Start Over

Dielectric Properties of Paper Made from Pulps Loaded with Ferroelectric Particles.

Authors :
El Omari, Hind
Zyane, Adel
Belfkira, Ahmed
Taourirte, Moha
Brouillette, François
Source :
Journal of Nanomaterials; 5/9/2016, p1-10, 10p
Publication Year :
2016

Abstract

Due to its physical properties and its ease of manufacture, paper is widely used in various engineering applications such as electrical insulation materials for components in high voltage technology. In this study, paper loaded with ferroelectric nanoparticles (BaTiO<subscript>3</subscript> and SrTiO<subscript>3</subscript>) was made with fibers obtained from plants growing on the Moroccan soil [Halfa (Stipa tenacissima), Agave (Agave americana), Pennisetum (Pennisetum alopecuroides), Typha (Typha latifolia), and Junc (Juncus effusus)] and two commercial pulps (bleached softwood Kraft and newsprint grade thermomechanical pulps). A retention aid, cation polyacrylamide (Percol 292), was necessary to retain ferroelectric particles in the fibrous network and improve the dispersion of strontium titanate particles. The different pulp and handsheets used were characterized according to standard methods (Pulp and Paper Technical Association of Canada, PAPTAC). It is well known that annual and perennial plants contain high percentages of fines (length < 0.2 mm) and short fibers. The results show that there is a strong interdependence between the dielectric properties of the loaded paper and surface finish, porosity, dispersion level of ceramic particles, fines content, shape, conformability, and sheet formation. The single dielectric relaxation detected towards low frequencies is attributed to hydroxyl groups present on fiber surfaces, in ceramic particles and adsorbed water. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16874110
Database :
Complementary Index
Journal :
Journal of Nanomaterials
Publication Type :
Academic Journal
Accession number :
115216955
Full Text :
https://doi.org/10.1155/2016/3982572