Back to Search Start Over

Design of a confined environment using protein cages and crystals for the development of biohybrid materials.

Authors :
Abe, Satoshi
Maity, Basudev
Ueno, Takafumi
Source :
Chemical Communications; 5/14/2016, Vol. 52 Issue 39, p6496-6512, 17p
Publication Year :
2016

Abstract

There is growing interest in the design of protein assemblies for use in materials science and bionanotechnology. Protein assemblies, such as cages and crystalline protein structures, provide confined chemical environments that allow immobilization of metal complexes, nanomaterials, and proteins by metal coordination, assembly/disassembly reactions, genetic manipulation and crystallization methods. Protein assembly composites can be used to prepare hybrid materials with catalytic, magnetic and optical properties for cellular applications due to their high stability, solubility and biocompatibility. In this feature article, we focus on the recent development of ferritin as the most promising molecular template protein cage and in vivo and in vitro engineering of protein crystals as solid protein materials with functional properties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13597345
Volume :
52
Issue :
39
Database :
Complementary Index
Journal :
Chemical Communications
Publication Type :
Academic Journal
Accession number :
115165831
Full Text :
https://doi.org/10.1039/c6cc01355d