Back to Search Start Over

Mitochondrial Genome and Nuclear Markers Provide New Insight into the Evolutionary History of Macaques.

Authors :
Jiang, Juan
Yu, Jianqiu
Li, Jing
Li, Peng
Fan, Zhenxin
Niu, Lili
Deng, Jiabo
Yue, Bisong
Source :
PLoS ONE; 5/2/2016, Vol. 11 Issue 5, p1-19, 19p
Publication Year :
2016

Abstract

The evolutionary history of macaques, genus Macaca, has been under debate due to the short times of divergence. In this study, maternal, paternal, and biparental genetic systems were applied to infer phylogenetic relationships among macaques and to trace ancient hybridization events in their evolutionary history. Using a PCR display method, 17 newly phylogenetically informative Alu insertions were identified from M. assamensis. We combined presence/absence analysis of 84 Alu elements with mitochondrial genomes as well as nuclear sequences (five autosomal genes, two Y chromosomal genes, and one X chromosomal fragment) to reconstruct a robust macaque phylogeny. Topologies generated from different inherited markers were similar supporting six well defined species groups and a close relationship of M. assamensis and M. thibetana, but differed in the placing of M. arctoides. Both Alu elements and nuclear genes supported that M. arctoides was close to the sinica group, whereas the mitochondrial data clustered it into the fascicularis/mulatta lineage. Our results reveal that a sex-biased hybridization most likely occurred in the evolutionary history of M. arctoides, and suggest an introgressive pattern of male-mediated gene flow from the ancestors of M. arctoides to the M. mulatta population followed by nuclear swamping. According to the estimation of divergence dates, the hybridization occurred around 0.88~1.77 mya (nuclear data) or 1.38~2.56 mya (mitochondrial data). In general, our study indicates that a combination of various molecular markers could help explain complicated evolutionary relationships. Our results have provided new insights into the evolutionary history of macaques and emphasize that hybridization might play an important role in macaque evolution. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
11
Issue :
5
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
115054442
Full Text :
https://doi.org/10.1371/journal.pone.0154665