Back to Search Start Over

Urea synthesis in the African lungfish Protopterus dolloi - heatic carbamoyl phosphate synthetase III and glutimine synthetase are upregulated by 5 days of aerial exposure.

Authors :
Shit F. Chew, N.J.
Tan F. Ong, N.J.
Lilian Ho, N.J.
Wai L. Tam, N.J.
Ai M. Loong, N.J.
Kum C. Hiong, N.J.
Wai P. Wong, N.J.
Yuen K. Ip, N.J.
Source :
Journal of Experimental Biology; Oct2003, Vol. 206 Issue 20, p3615-3624, 10p, 6 Charts, 2 Graphs
Publication Year :
2003

Abstract

Like the marine ray Taeniura lymma, the African lungfish Protopterus dolloi possesses carbamoyl phosphate III (CPS III) in the liver and not carbamoyl phosphate I (CPS I), as in the mouse Mus musculus or as in other African lungfish reported elsewhere. However, similar to other African lungfish and tetrapods, hepatic arginase of P. dolioi is present mainly in the cytosol. Glutamine synthetase activity is present in both the mitochondrial and cytosolic fractions of the liver of P. dolloi. Therefore, we conclude that P. dolloi is a more primitive extant lungfish, which is intermediate between aquatic fish and terrestrial tetrapods, and represents a link in the fish-tetrapod continuum. During 6 days of aerial exposure, the ammonia excretion rate in P. dolloi decreased significantly to 8-16% of the submerged control. However, there were no significant increases in ammonia contents in the muscle, liver or plasma of specimens exposed to air for 6 days. These results suggest that (1) endogenous ammonia production was drastically reduced and (2) endogenous ammonia was detoxified effectively into urea. Indeed, there were significant decreases in glutamate, glutamine and lysine levels in the livers of fish exposed to air, which led to a decrease in the total free amino acid content. This indirectly confirms that the specimen had reduced its rates of proteolysis and/or amino acid catabolism to suppress endogenous ammonia production. Simultaneously, there were significant increases in urea levels in the muscle (8-fold), liver (10.5fold) and plasma (12.6-fold) of specimens exposed to air for 6 days. Furthermore, there was an increase in the hepatic ornithine-urea cycle (OUC) capacity, with significant increases in the activities of CPS III (3.8-fold), argininosuccinate synthetase + lyase (1.8-fold) and, more importantly, glutamine synthetase (2.2-fold). This is the first report on the upregulation of OUC capacity and urea synthesis rate in an African lungfish exposed to air. Upon re-immersion, the urea excretion rate increased 22-fold compared with that of the control specimen, which is the greatest increase among fish during emersion-immersion transitions and suggests that P. dolloi possesses transporters that facilitate the excretion of urea in water. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00220949
Volume :
206
Issue :
20
Database :
Complementary Index
Journal :
Journal of Experimental Biology
Publication Type :
Academic Journal
Accession number :
11385104
Full Text :
https://doi.org/10.1242/jeb.00619