Back to Search Start Over

Running per se stimulates the dendritic arbor of newborn dentate granule cells in mouse hippocampus in a duration-dependent manner.

Authors :
Dostes, Sandrine
Dubreucq, Sarah
Ladevèze, Elodie
Marsicano, Giovanni
Abrous, Djoher N.
Chaouloff, Francis
Koehl, Muriel
Source :
Hippocampus; Mar2016, Vol. 26 Issue 3, p282-288, 7p
Publication Year :
2016

Abstract

ABSTRACT Laboratory rodents provided chronic unlimited access to running wheels display increased neurogenesis in the hippocampal dentate gyrus. In addition, recent studies indicate that such an access to wheels stimulates dendritic arborization in newly formed neurons. However, (i) the presence of the running wheel in the housing environment might also bear intrinsic influences on the number and shape of new neurons and (ii) the dendritic arborization of new neurons might be insensitive to moderate daily running activity (i.e., several hours). In keeping with these uncertainties, we have examined neurogenesis and dendritic arborization in newly formed granular cells in adult C57Bl/6N male mice housed for 3 weeks under standard conditions, with a locked wheel, with a running wheel set free 3 h/day, or with a running wheel set permanently free. The results indicate that the presence of a blocked wheel in the home cage increased cell proliferation, but not the number of new neurons while running increased in a duration-dependent manner the number of newborn neurons, as assessed by DCX labeling. Morphological analyses of the dendritic tree of newborn neurons, as identified by BrdU-DCX co-staining, revealed that although the presence of the wheel stimulated their dendritic architecture, the amplitude of this effect was lower than that elicited by running activity, and was found to be running duration-dependent. © 2015 Wiley Periodicals, Inc. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10509631
Volume :
26
Issue :
3
Database :
Complementary Index
Journal :
Hippocampus
Publication Type :
Academic Journal
Accession number :
113138625
Full Text :
https://doi.org/10.1002/hipo.22551