Back to Search Start Over

Augmentation of CFTR maturation by S-nitrosoglutathione reductase.

Authors :
Zaman, Khalequz
Sawczak, Victoria
Zaidi, Atiya
Getsy, Paulina
Zeinomar, Maryam
Smith, Laura
Corey, Deborah
Kelley, Thomas J.
Lewis, Stephen J.
Gaston, Benjamin
Butler, Maya
Bennett, Deric
Greenberg, Zivi
Forbes, Michael
DeRonde, Kim
Palmer, Lisa
Rehman, Shagufta
Jyothikumar, Vinod
Periasamy, Ammasi
Sattar, Abdus
Source :
American Journal of Physiology: Lung Cellular & Molecular Physiology; 2/1/2016, Vol. 310 Issue 3, pL263-L270, 8p
Publication Year :
2016

Abstract

Snitrosoglutathione (GSNO) reductase regulates novel endogenous S-nitrosothiol signaling pathways, and mice deficient in GSNO reductase are protected from airways hyperreactivity. S-nitrosothiols are present in the airway, and patients with cystic fibrosis (CF) tend to have low S-nitrosothiol levels that may be attributed to upregulation of GSNO reductase activity. The present study demonstrates that 1) GSNO reductase activity is increased in the cystic fibrosis bronchial epithelial (CFBE41<superscript>o-</superscript>) cells expressing mutant F508del-cystic fibrosis transmembrane regulator (CFTR) compared with the wild-type CFBE41<superscript>o-</superscript> cells, 2) GSNO reductase expression level is increased in the primary human bronchial epithelial cells expressing mutant F508del-CFTR compared with the wild-type cells, 3) GSNO reductase colocalizes with cochaperone Hsp70/Hsp90 organizing protein (Hop; Stip1) in human airway epithelial cells, 4) GSNO reductase knockdown with siRNA increases the expression and maturation of CFTR and decreases Stip1 expression in human airway epithelial cells, 5) increased levels of GSNO reductase cause a decrease in maturation of CFTR, and 6) a GSNO reductase inhibitor effectively reverses the effects of GSNO reductase on CFTR maturation. These studies provide a novel approach to define the subcellular location of the interactions between Stip1 and GSNO reductase and the role of S-nitrosothiols in these interactions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10400605
Volume :
310
Issue :
3
Database :
Complementary Index
Journal :
American Journal of Physiology: Lung Cellular & Molecular Physiology
Publication Type :
Academic Journal
Accession number :
112862412
Full Text :
https://doi.org/10.1152/ajplung.00269.2014