Back to Search Start Over

Regulation of Transforming Growth Factor β-Activated Kinase Activation by Epigallocatechin-3-Gallate in Rheumatoid Arthritis Synovial Fibroblasts: Suppression of K63-Linked Autoubiquitination of Tumor Necrosis Factor Receptor-Associated Factor 6

Authors :
Singh, Anil K.
Umar, Sadiq
Riegsecker, Sharayah
Chourasia, Mukesh
Ahmed, Salahuddin
Source :
Arthritis & Rheumatology; Feb2016, Vol. 68 Issue 2, p347-358, 12p
Publication Year :
2016

Abstract

Objective Transforming growth factor β-activated kinase 1 (TAK1) is a key MAPKKK family protein in interleukin-1β (IL-1β), tumor necrosis factor (TNF), and Toll-like receptor signaling. This study was undertaken to examine the posttranslational modification of TAK1 and its therapeutic regulation in rheumatoid arthritis (RA). Methods The effect of TAK1, IL-1 receptor-associated kinase 1 (IRAK-1), and TNF receptor-associated factor 6 (TRAF6) inhibition was evaluated in IL-1β-stimulated human RA synovial fibroblasts (RASFs). Western blotting, immunoprecipitation, and 20S proteasome assay were used to study the ubiquitination process in RASFs. The efficacy of epigallocatechin-3-gallate (EGCG), a potent antiinflammatory molecule, in regulating these processes in RASFs was evaluated. Molecular docking was performed to examine the interaction of EGCG with human TAK1, IRAK-1, and TRAF6. These findings were confirmed using a rat model of adjuvant-induced arthritis (AIA). Results Inhibition of TAK1, but not IRAK-1 or TRAF6, completely abrogated IL-1β-induced IL-6 and IL-8 synthesis in RASFs. EGCG inhibited TAK1 phosphorylation at Thr<superscript>184/187</superscript> and occupied the C<superscript>174</superscript> position, an ATP-binding site, to inhibit its kinase activity. EGCG pretreatment also inhibited K<superscript>63</superscript>-linked autoubiquitination of TRAF6, a posttranslational modification essential for TAK1 autophosphorylation, by forming a stable H bond at the K<superscript>124</superscript> position on TRAF6. Furthermore, EGCG enhanced proteasome-associated deubiquitinase expression to rescue proteins from proteasomal degradation. Western blot analyses of joint homogenates from rats with AIA showed a significant increase in K<superscript>48</superscript>-linked polyubiquitination, TAK1 phosphorylation, and TRAF6 expression when compared to naive rats. Administration of EGCG (50 mg/kg/day) for 10 days ameliorated AIA in rats by reducing TAK1 phosphorylation and K<superscript>48</superscript>-linked polyubiquitination. Conclusion Our findings provide a rationale for targeting TAK1 for the treatment of RA with EGCG. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
23265191
Volume :
68
Issue :
2
Database :
Complementary Index
Journal :
Arthritis & Rheumatology
Publication Type :
Academic Journal
Accession number :
112463687
Full Text :
https://doi.org/10.1002/art.39447