Back to Search Start Over

Peculiarity of Porcine Amniotic Membrane and Its Derived Cells: A Contribution to the Study of Cell Therapy from a Large Animal Model.

Authors :
Lange-Consiglio, Anna
Corradetti, Bruna
Bertani, Sabrina
Notarstefano, Valentina
Perrini, Claudia
Marini, Maria Giovanna
Arrighi, Silvana
Bosi, Giampaolo
Belloli, Angelo
Pravettoni, Davide
Locatelli, Valentina
Cremonesi, Fausto
Bizzaro, Davide
Source :
Cellular Reprogramming; Dec2015, Vol. 17 Issue 6, p472-483, 12p
Publication Year :
2015

Abstract

The aim of this work was to provide, for the first time, a protocol for isolation and characterization of stem cells from porcine amniotic membrane in view of their potential uses in regenerative medicine. From three samples of allanto-amnion recovered at delivery, the amniotic membrane was stripped from overlying allantois and digested with trypsin and collagenase to isolate epithelial (amniotic epithelial cells [AECs]) and mesenchymal cells, respectively. Proliferation, differentiation, and characterization studies by molecular biology and flow cytometry were performed. Histological examination revealed very few mesenchymal cells in the stromal layer, and a cellular yield of AECs of 10 × 10<superscript>6</superscript>/gram of digested tissue was achieved. AECs readily attached to plastic culture dishes displaying typical cuboidal morphology and, although their proliferative capacity decreased to the fifth passage, AECs showed a mean doubling time of 24.77 ± 6 h and a mean frequency of one fibroblast colony-forming unit (CFU-F) for every 116.75 plated cells. AECs expressed mesenchymal stem cell (MSC) mRNA markers ( CD29, CD166, CD90, CD73, CD117) and pluripotent markers ( Nanog and Oct 4), whereas they were negative for CD34 and MHCII. Mesodermic, ectodermic, and endodermic differentiation was confirmed by staining and expression of specific markers. We conclude that porcine amniotic membrane can provide an attractive source of stem cells that may be a useful tool for biomedical research. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21524971
Volume :
17
Issue :
6
Database :
Complementary Index
Journal :
Cellular Reprogramming
Publication Type :
Academic Journal
Accession number :
111504618
Full Text :
https://doi.org/10.1089/cell.2015.0029