Back to Search
Start Over
InMAP: a new model for air pollution interventions.
- Source :
- Geoscientific Model Development Discussions; 2015, Vol. 8 Issue 10, p9281-9321, 41p
- Publication Year :
- 2015
-
Abstract
- Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM<subscript>2.5</subscript>) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM<subscript>2.5</subscript> concentrations with population-weighted mean fractional error (MFE) and bias (MFB)< 10% and population-weighted R² ≈ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM<subscript>2.5</subscript> (MFE: 16%; MFB: 13%) and the worst predictive performance is for particulate nitrate (MFE: 119%; MFB: 106%). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O<subscript>3</subscript>) concentrations. The InMAP model source code and input data are freely available online. [ABSTRACT FROM AUTHOR]
- Subjects :
- AIR pollution control
AIR quality
EULERIAN graphs
Subjects
Details
- Language :
- English
- ISSN :
- 19919611
- Volume :
- 8
- Issue :
- 10
- Database :
- Complementary Index
- Journal :
- Geoscientific Model Development Discussions
- Publication Type :
- Academic Journal
- Accession number :
- 110752383
- Full Text :
- https://doi.org/10.5194/gmdd-8-9281-2015