Back to Search Start Over

Aschantin targeting on the kinase domain of mammalian target of rapamycin suppresses epidermal growth factor-induced neoplastic cell transformation.

Authors :
Cheol-Jung Lee
Jeong-Hoon Jang
Ji-Young Lee
Mee-Hyun Lee
Yan Li
Hyung Won Ryu
Kyung-Il Choi
Zigang Dong
Hye Suk Lee
Sei-Ryang Oh
Young-Joon Surh
Yong-Yeon Cho
Source :
Carcinogenesis; Oct2015, Vol. 36 Issue 10, p1223-1234, 12p
Publication Year :
2015

Abstract

Mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, forms two different complexes, complex 1 and 2, and plays a key role in the regulation of Akt signaling-mediated cell proliferation and transformation. This study reveals aschantin, a natural compound abundantly found in Magnolia flos, as a novel mTOR kinase inhibitor. Aschantin directly targeted the active pocket of mTOR kinase domain by competing with adenosine triphosphate (ATP), but not PI3K and PDK1. Aschantin inhibited epidermal growth factor (EGF)-induced full activation of Akt by phosphorylation at Ser473/Thr308, resulting in inhibition of the mTORC2/Akt and Akt/mTORC1/p70S6K signaling pathways and activation of GSK3β by abrogation of Akt-mediated GSK3β phosphorylation at Ser9. The activated GSK3β inhibited cell proliferation by c-Jun phosphorylation at Ser243, which facilitated destabilization and degradation of c-Jun through the ubiquitinationmediated proteasomal degradation pathway. Notably, aschantin treatment decreased c-Jun stability through inhibition of the mTORC2-Akt signaling pathway, which suppressed EGF-induced anchorage-independent cell transformation in non-malignant JB6 Cl41 and HaCaT cells and colony growth of LNCaP and MIAPaCa-2 cancer cells in soft agar. Altogether, the results show that aschantin targets mTOR kinase and destabilizes c-Jun, which implicate aschantin as a potential chemopreventive or therapeutic agent. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01433334
Volume :
36
Issue :
10
Database :
Complementary Index
Journal :
Carcinogenesis
Publication Type :
Academic Journal
Accession number :
110199535
Full Text :
https://doi.org/10.1093/carcin/bgv113