Back to Search Start Over

On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space.

Authors :
Wintraecken, M.
Vegter, G.
Source :
Mathematics in Computer Science; Oct2015, Vol. 9 Issue 3, p345-353, 9p
Publication Year :
2015

Abstract

Let $${\Sigma}$$ be a strictly convex (hyper-)surface, S an optimal triangulation (piecewise linear in ambient space) of $${\Sigma}$$ whose m vertices lie on $${\Sigma}$$ and $${\tilde{S}_m}$$ an optimal triangulation of $${\Sigma}$$ with m vertices. Here we use optimal in the sense of minimizing $${d_H(S_m, \Sigma)}$$ , where $${d_H}$$ denotes the Hausdorff distance. In 'Lagerungen in der Ebene, auf der Kugel und im Raum' Fejes Tóth conjectured that the leading term in the asymptotic development of $${d_H(S_m, \Sigma)}$$ in m is twice that of $${d_H(\tilde{S}_m, \Sigma)}$$ . This statement is proven. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16618270
Volume :
9
Issue :
3
Database :
Complementary Index
Journal :
Mathematics in Computer Science
Publication Type :
Academic Journal
Accession number :
110137425
Full Text :
https://doi.org/10.1007/s11786-014-0216-7