Back to Search
Start Over
On the Optimal Triangulation of Convex Hypersurfaces, Whose Vertices Lie in Ambient Space.
- Source :
- Mathematics in Computer Science; Oct2015, Vol. 9 Issue 3, p345-353, 9p
- Publication Year :
- 2015
-
Abstract
- Let $${\Sigma}$$ be a strictly convex (hyper-)surface, S an optimal triangulation (piecewise linear in ambient space) of $${\Sigma}$$ whose m vertices lie on $${\Sigma}$$ and $${\tilde{S}_m}$$ an optimal triangulation of $${\Sigma}$$ with m vertices. Here we use optimal in the sense of minimizing $${d_H(S_m, \Sigma)}$$ , where $${d_H}$$ denotes the Hausdorff distance. In 'Lagerungen in der Ebene, auf der Kugel und im Raum' Fejes Tóth conjectured that the leading term in the asymptotic development of $${d_H(S_m, \Sigma)}$$ in m is twice that of $${d_H(\tilde{S}_m, \Sigma)}$$ . This statement is proven. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16618270
- Volume :
- 9
- Issue :
- 3
- Database :
- Complementary Index
- Journal :
- Mathematics in Computer Science
- Publication Type :
- Academic Journal
- Accession number :
- 110137425
- Full Text :
- https://doi.org/10.1007/s11786-014-0216-7