Back to Search Start Over

A multimeric model for murine anti-apoptotic protein Bcl-2 and structural insights for its regulation by post-translational modification.

Authors :
Venkatarajan S. Mathura
Kizhake V. Soman
Tushar K. Varma
Werner Braun
Source :
Journal of Molecular Modeling; Oct2003, Vol. 9 Issue 5, p298, 6p
Publication Year :
2003

Abstract

A monomeric model for murine antiapoptotic protein Bcl-2 was constructed by comparative modeling with the software suite MPACK (EXDIS/DIAMOD/FANTOM) using human Bcl-xL as a template. The monomeric model shows that murine Bcl-2 is an all a-helical protein with a central (helix 5) hydrophobic helix surrounded by amphipathic helices and an unstructured loop of 30 residues connecting helices 1 and 2. It has been previously shown that phosphorylation of Ser 70 located in this loop region regulates the anti-apoptotic activity of Bcl-2. Based on our current model, we propose that this phosphorylation may result in a conformational change that aids multimer formation. We constructed a model for the Bcl-2 homodimer based on the experimentally determined 3D structure of the Bcl-xL: Bad peptide complex. The model shows that it will require approximately a half turn in helix 2 to expose hydrophobic residues important for the formation of a multimer. Helices 5 and 6 of the monomeric subunit Bcl-2 have been proposed to form an ion-channel by associating with helices 5 and 6 of another monomeric subunit in the higher-order complex. In the multimeric model of Bcl-2, helices 5 and 6 of each subunit were placed distantly apart. From our model, we conclude that a global conformational change may be required to bring helices 5 and 6 together during ion-channel formation. Figure Hydrophobic interactions in the dimerization groove are shown. Helix 2' of monomer B interacts through residues V90, H91, L94, A97, G98, F101 and Y105 with the hydrophobic surface formed by residues in helices 3, 4, and 5 of the monomer A. Shown here is a lateral view of monomer A depicted in a surface model with hydrophobic regions in red. The backbone of the helix is shown using a neon representation in yellow and the interacting side chains are in blue. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16102940
Volume :
9
Issue :
5
Database :
Complementary Index
Journal :
Journal of Molecular Modeling
Publication Type :
Academic Journal
Accession number :
10975496