Back to Search Start Over

Age and nature of Cryogenian diamictites at Aksu, Northwest China: implications for Sturtian tectonics and climate.

Authors :
Ding, Haifeng
Ma, Dongsheng
Lin, Qizhong
Jing, Linhai
Source :
International Geology Review; Dec2015, Vol. 57 Issue 16, p2044-2064, 21p
Publication Year :
2015

Abstract

The Neoproterozoic succession in the Aksu region of northwestern China forms an unconformable boundary with the lower Precambrian Aksu basement group and consists of the Qiaoenbrak, Yuermeinak, Sugetbrak, and Chigebrak Formations. The two lowermost units include distinct glaciogenic diamictites that indicate distinct episodes of glaciation. In this study, we report the LA-ICP-MS U–Pb ages of detrital zircons and geochemical data from the lower Neoproterozoic strata. The age of the detrital zircon constrains the maximum depositional age to between 769 ± 10 and 727 ± 8 Ma for the Qiaoenbrak diamictites, which are associated with the Kaigas glaciation that occurred during the early Cryogenian period. The youngest detrital zircon age of 719 ± 9 Ma corresponds to the maximum depositional age of the Yuermeinak diamictites, which are associated with the Sturtian glaciation. The detrital zircons from the lower Neoproterozoic strata in the Aksu area indicated four peak ages of 2484, 1948, 861, and 647–581 Ma, which are consistent with the major tectonic episodes in the Tarim Block. The peak age of 2484 Ma represents an Archaean basement, which participated in the worldwide continental nuclei growth event from the late Neoarchaean to the early Palaeoproterozoic. The peak age of 1948 Ma may be associated with the assembly of the Columbia supercontinent, and the 861 and 647–581 Ma are likely associated with the break-up of the Rodinia supercontinent. The combination of geological and geochemical characteristics between the Qiaoenbrak Formation and Aksu Group indicates that the Qiaoenbrak Formation may be penecontemporaneous with the Aksu Group in an active continental margin tectonic setting. Following the break-up of the Rodinia supercontinent, the margin of the Aksu evolved into a passive margin and the Yuermeinak and Sugetbrak Formations were deposited. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00206814
Volume :
57
Issue :
16
Database :
Complementary Index
Journal :
International Geology Review
Publication Type :
Academic Journal
Accession number :
109421734
Full Text :
https://doi.org/10.1080/00206814.2015.1050463