Back to Search Start Over

Covering Problems for Functions n-Fold Symmetric and Convex in the Direction of the Real Axis II.

Authors :
Koczan, Leopold
Zaprawa, Pawel
Source :
Bulletin of the Malaysian Mathematical Sciences Society; Oct2015, Vol. 38 Issue 4, p1637-1655, 19p, 5 Graphs
Publication Year :
2015

Abstract

Let $${\mathcal {F}}$$ denote the class of all functions univalent in the unit disk $$\Delta \equiv \{\zeta \in {\mathbb {C}}\,:\,\left| \zeta \right| <1\}$$ and convex in the direction of the real axis. The paper deals with the subclass $${\mathcal {F}}^{(n)}$$ of these functions $$f$$ which satisfy the property $$f(\varepsilon z)=\varepsilon f(z)$$ for all $$z\in \Delta $$ , where $$\varepsilon =e^{2\pi i/n}$$ . The functions of this subclass are called $$n$$ -fold symmetric. For $${\mathcal {F}}^{(n)}$$ , where $$n$$ is odd positive integer, the following sets, $$\bigcap _{f\in {\mathcal {F}}^{(n)}} f(\Delta )$$ -the Koebe set and $$\bigcup _{f\in {\mathcal {F}}^{(n)}} f(\Delta )$$ -the covering set, are discussed. As corollaries, we derive the Koebe and the covering constants for $${\mathcal {F}}^{(n)}$$ . [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01266705
Volume :
38
Issue :
4
Database :
Complementary Index
Journal :
Bulletin of the Malaysian Mathematical Sciences Society
Publication Type :
Academic Journal
Accession number :
109251162
Full Text :
https://doi.org/10.1007/s40840-014-0107-8