Back to Search Start Over

Structural MRI-Based Predictions in Patients with Treatment-Refractory Depression (TRD).

Authors :
Johnston, Blair A.
Steele, J. Douglas
Tolomeo, Serenella
Christmas, David
Matthews, Keith
Source :
PLoS ONE; 7/17/2015, Vol. 10 Issue 7, p1-16, 16p
Publication Year :
2015

Abstract

The application of machine learning techniques to psychiatric neuroimaging offers the possibility to identify robust, reliable and objective disease biomarkers both within and between contemporary syndromal diagnoses that could guide routine clinical practice. The use of quantitative methods to identify psychiatric biomarkers is consequently important, particularly with a view to making predictions relevant to individual patients, rather than at a group-level. Here, we describe predictions of treatment-refractory depression (TRD) diagnosis using structural T<subscript>1</subscript>-weighted brain scans obtained from twenty adult participants with TRD and 21 never depressed controls. We report 85% accuracy of individual subject diagnostic prediction. Using an automated feature selection method, the major brain regions supporting this significant classification were in the caudate, insula, habenula and periventricular grey matter. It was not, however, possible to predict the degree of ‘treatment resistance’ in individual patients, at least as quantified by the Massachusetts General Hospital (MGH-S) clinical staging method; but the insula was again identified as a region of interest. Structural brain imaging data alone can be used to predict diagnostic status, but not MGH-S staging, with a high degree of accuracy in patients with TRD. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19326203
Volume :
10
Issue :
7
Database :
Complementary Index
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
108665119
Full Text :
https://doi.org/10.1371/journal.pone.0132958