Back to Search Start Over

Modeling interface-controlled phase transformation kinetics in thin films.

Authors :
Pang, E. L.
Vo, N. Q.
Philippe, T.
Voorhees, P. W.
Source :
Journal of Applied Physics; 2015, Vol. 117 Issue 17, p175304-1-175304-7, 7p, 3 Diagrams, 3 Graphs
Publication Year :
2015

Abstract

The Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation is widely used to describe phase transformation kinetics. This description, however, is not valid in finite size domains, in particular, thin films. A new computational model incorporating the level-set method is employed to study phase evolution in thin film systems. For both homogeneous (bulk) and heterogeneous (surface) nucleation, nucleation density and film thickness were systematically adjusted to study finitethickness effects on the Avrami exponent during the transformation process. Only site-saturated nucleation with isotropic interface-kinetics controlled growth is considered in this paper. We show that the observed Avrami exponent is not constant throughout the phase transformation process in thin films with a value that is not consistent with the dimensionality of the transformation. Finitethickness effects are shown to result in reduced time-dependent Avrami exponents when bulk nucleation is present, but not necessarily when surface nucleation is present. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
117
Issue :
17
Database :
Complementary Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
102606780
Full Text :
https://doi.org/10.1063/1.4919725