Back to Search Start Over

A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency.

Authors :
Gustafsson, David
Cahuana, Jessica Chani
Kuylenstierna, Dan
Angelov, Iltcho
Fager, Christian
Source :
IEEE Transactions on Microwave Theory & Techniques; Dec2014 Part 1, Vol. 62 Issue 12, p3006-3016, 11p
Publication Year :
2014

Abstract

In this paper, we further develop the concept of a wideband Doherty power-amplifier topology with reconfigurable efficiency. This is done by presenting new theory that - in contrast to previous work - makes it possible to analyze how the performance of the amplifier depends on the input network properties and the choice of gate bias voltages. The utility of the presented theory is demonstrated by the design and characterization of a gallium-nitride monolithic-microwave integrated-circuit amplifier designed in close agreement with the theoretical findings. Continuous-wave (CW) measurements show that the fabricated amplifier provides more than 31% power-added efficiency (PAE) at 9-dB output power back-off over a 5.8-8.8-GHz frequency range, and that the efficiency can be reconfigured as predicted by the presented theory. Modulated measurements - employing digital pre-distortion (DPD) and a 20-MHz signal with 8.5-dB peak-to-average power ratio - show more than 32% average PAE across the same 5.8-8.8-GHz frequency range. Both the CW and the modulated measurements thereby verify the wideband performance predicted by the theory. In addition, modulated measurements at 7.0 GHz without DPD show that the amplifier can provide excellent raw linearity by demonstrating -41.0-dBc adjacent channel power ratio and -34.2-dB normalized mean square error. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189480
Volume :
62
Issue :
12
Database :
Complementary Index
Journal :
IEEE Transactions on Microwave Theory & Techniques
Publication Type :
Academic Journal
Accession number :
101187564
Full Text :
https://doi.org/10.1109/TMTT.2014.2362136