Back to Search Start Over

The Semianalytic Mode Matching Algorithm for GPR Wave Scattering From Multiple Complex Objects Buried in a Rough Lossy Dielectric Half-Space.

Authors :
Morgenthaler, A. W.
Rappaport, C. M.
Source :
IEEE Transactions on Geoscience & Remote Sensing; Dec2011 Part 1, Vol. 49 Issue 12, p4738-4742, 5p
Publication Year :
2011

Abstract

The semianalytic mode matching (SAMM) algorithm is a quick and efficient computational method that models wave scattering from multiple objects in half-spaces. This algorithm re lies heavily on appropriate choices of coordinate scattering centers (CSCs) for various modal expansions. Here, SAMM is used to simulate scattering from irregularly shaped 2-D lossy objects embedded in realistic half-space media with rough ground surfaces. Because the CSC locations for complex scatterers are much more dependent on object or interface geometry than frequency and are independent of the dielectric contrast between scatterer and back ground, it is worthwhile to carefully analyze particular scattering object shapes and store the optimal CSC locations for future use. In addition, scattering from multiple targets buried beneath rough ground surfaces can be constructed from simpler simulations of the individual targets taken separately, where combining these simpler simulations correctly can increase robustness in large SAMM simulations. Excellent results are found by comparing 2-D SAMM with 2-D finite-difference frequency domain for multiple scattering objects on the order of a fraction to several wavelengths in size located within rough half-space dielectric backgrounds. [ABSTRACT FROM PUBLISHER]

Details

Language :
English
ISSN :
01962892
Volume :
49
Issue :
12
Database :
Complementary Index
Journal :
IEEE Transactions on Geoscience & Remote Sensing
Publication Type :
Academic Journal
Accession number :
101185910
Full Text :
https://doi.org/10.1109/TGRS.2011.2159728