Back to Search Start Over

Monitoring seasonal and diurnal changes in photosynthetic pigments with automated PRI and NDVI sensors.

Authors :
Gamon, J. A.
Kovalchuk, O.
Wong, C. Y. S.
Harris, A.
Garrity, S. R.
Source :
Biogeosciences Discussions; 2015, Vol. 12 Issue 3, p2947-2978, 32p
Publication Year :
2015

Abstract

The vegetation indices normalized difference vegetation index (NDVI) and photochemical reflectance index (PRI) provide indicators of pigmentation and photosynthetic activity that can be used to model photosynthesis from remote sensing with the light-use efficiency model. To help develop and validate this approach, reliable proximal NDVI and PRI sensors have been needed. We tested new NDVI and PRI sensors, "SRS" sensors recently developed by Decagon Devices, during spring activation of photosynthetic activity in evergreen and deciduous stands. We also evaluated two methods of sensor cross-calibration, one that considered sky conditions (cloud cover) at midday only, and the other that also considered diurnal sun angle effects. Cross-calibration clearly affected sensor agreement with independent measurements, with the best method dependent upon the study aim and time frame (seasonal vs. diurnal). The seasonal patterns of NDVI and PRI differed for evergreen and deciduous species, demonstrating the complementary nature of these two indices. Over the spring season, PRI was most strongly influenced by changing chlorophyll : carotenoid pool sizes, while over the diurnal time scale PRI was most affected by the xanthophyll cycle epoxidation state. This finding demonstrates that the SRS PRI sensors can resolve different processes affecting PRI over different time scales. The advent of small, inexpensive, automated PRI and NDVI sensors offers new ways to explore environmental and physiological constraints on photosynthesis, and may be particularly well-suited for use at flux tower sites. Wider application of automated sensors could lead to improved integration of flux and remote sensing approaches to studying photosynthetic carbon uptake, and could help define the concept of contrasting vegetation optical types. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
18106277
Volume :
12
Issue :
3
Database :
Complementary Index
Journal :
Biogeosciences Discussions
Publication Type :
Academic Journal
Accession number :
101028116
Full Text :
https://doi.org/10.5194/bgd-12-2947-2015