Back to Search
Start Over
Consistent static and small-signal physics-based modeling of dye-sensitized solar cells under different illumination conditions.
- Source :
- Physical Chemistry Chemical Physics (PCCP); 2013, Vol. 15 Issue 35, p14634-14646, 13p
- Publication Year :
- 2013
-
Abstract
- A numerical device-level model of dye-sensitized solar cells (DSCs) is presented, which self-consistently couples a physics-based description of the photoactive layer with a compact circuit-level description of the passive parts of the cell. The opto-electronic model of the nanoporous dyed film includes a detailed description of photogeneration and trap-limited kinetics, and a phenomenological description of nonlinear recombination. Numerical simulations of the dynamic small-signal behavior of DSCs, accounting for trapping and nonlinear recombination mechanisms, are reported for the first time and validated against experiments. The model is applied to build a consistent picture of the static and dynamic small-signal performance of nanocrystalline TiO<subscript>2</subscript>-based DSCs under different incident illumination intensity and direction, analyzed in terms of current–voltage characteristic, Incident Photon to Current Efficiency, and Electrochemical Impedance Spectroscopy. This is achieved with a reliable extraction and validation of a unique set of model parameters against a large enough set of experimental data. Such a complete and validated description allows us to gain a detailed view of the cell collection efficiency dependence on different operating conditions. In particular, based on dynamic numerical simulations, we provide for the first time a sound support to the interpretation of the diffusion length, in the presence of nonlinear recombination and non-uniform electron density distribution, as derived from small-signal characterization techniques and clarify its correlation with different estimation methods based on spectral measurements. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 14639076
- Volume :
- 15
- Issue :
- 35
- Database :
- Complementary Index
- Journal :
- Physical Chemistry Chemical Physics (PCCP)
- Publication Type :
- Academic Journal
- Accession number :
- 100923756
- Full Text :
- https://doi.org/10.1039/c3cp43802c