Back to Search Start Over

A high-performance waveguide-mode biosensor for detection of factor IX using PEG-based blocking agents to suppress non-specific binding and improve sensitivity.

Authors :
Lakshmipriya, Thangavel
Fujimaki, Makoto
Gopinath, Subash C. B.
Awazu, Koichi
Horiguchi, Yukichi
Nagasaki, Yukio
Source :
Analyst; 2013, Vol. 138 Issue 10, p2863-2870, 8p
Publication Year :
2013

Abstract

An evanescent-field-coupled waveguide-mode (EFC-WM) sensor utilizes monolithic SiO<subscript>2</subscript>/Si/SiO<subscript>2</subscript> sensing plates having a multilayered structure and is used to evaluate a blocking agent comprising poly(ethylene glycol)-based block copolymers. Factor IX (FIX) protein was detected using its aptamer, viz. FIX was immobilized on a glutaraldehyde-modified silica surface, and then treated with a biotinylated aptamer. The quantitative analysis of FIX was carried out using streptavidin-conjugated gold nanoparticles (SA-GNPs). The blocking polymer, poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAAc), was found to mask unreacted amine and glutaraldehyde (Glu) moieties on the SiO<subscript>2</subscript> surface, and it completely prevented the non-specific binding of SA-GNPs. By exploiting the strong blocking effect of PEG-b-PAAc, we achieved high ligand–analyte interaction sensitivity (sensitive down to 100 pM). To improve the sensitivity further, we also used pentaethylenehexamine-terminated PEG (N6-PEG) on GNPs. The improvement in sensitivity was found to be 1000-fold (to 100 fM), which was substantiated by the observation of higher numbers of GNPs on the sensing surface in the results of the scanning electron microscopic examination. Based on the competition assay of free biotin premixed with SA-GNPs, it was concluded that some active biotin-binding sites on the streptavidin were blocked by N6-PEG, which improved the binding ability to the biotinylated sensing surface. An optimum number of binding sites on the SA-GNPs might improve their binding affinity. The strategy shown with dual polymers, viz. blocking of the sensor chip surface and coating of SA-GNPs, is recommended for developing sensors with higher sensitivity and reliability. Selective binding of the aptamer to a very small amount of FIX in the mixed sample containing FXIa and FVIIa, or albumin, makes this the optimal strategy for detecting a FIX deficiency in human blood samples. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00032654
Volume :
138
Issue :
10
Database :
Complementary Index
Journal :
Analyst
Publication Type :
Academic Journal
Accession number :
100866206
Full Text :
https://doi.org/10.1039/c3an00298e