Back to Search Start Over

Whole-grain wheat consumption reduces inflammation in a randomized controlled trial on overweight and obese subjects with unhealthy dietary and lifestyle behaviors: role of polyphenols bound to cereal dietary fiber.

Authors :
Vitaglione, Paola
Mennella, Ilario
Ferracane, Rosalia
Rivellese, Angela A.
Giacco, Rosalba
Ercolini, Danilo
Gibbons, Sean M.
La Storia, Antonietta
Gilbert, Jack A.
Jonnalagadda, Satya
Thielecke, Frank
Gallo, Maria A.
Scalfi, Luca
Fogliano, Vincenzo
Source :
American Journal of Clinical Nutrition; Feb2015, Vol. 101 Issue 2, p251-261, 11p, 1 Color Photograph, 1 Diagram, 5 Charts, 2 Graphs
Publication Year :
2015

Abstract

Background: Epidemiology associates whole-grain (WG) consumption with several health benefits. Mounting evidence suggests that WG wheat polyphenols play a role in mechanisms underlying health benefits. Objective: The objective was to assess circulating concentration, excretion, and the physiologic role of WG wheat polyphenols in subjects with suboptimal dietary and lifestyle behaviors. Design: A placebo-controlled, parallel-group randomized trial with 80 healthy overweight/obese subjects with low intake of fruits and vegetables and sedentary lifestyle was performed. Participants replaced precise portions of refined wheat (RW) with a fixed amount of selected WG wheat or RW products for 8 wk. At baseline and every 4 wk, blood, urine, feces, and anthropometric and body composition measures were collected. Profiles of phenolic acids in biological samples, plasma markers of metabolic disease and inflammation, and fecal microbiota composition were assessed. Results: WG consumption for 4-8 wk determined a 4-fold increase of serum dihydroferulic acid (DHFA) and a 2-fold increase of fecal ferulic acid (FA) compared with RW consumption (no changes). Similarly, urinary FA at 8 wk doubled the baseline concentration only in WG subjects. Concomitant reduction of plasma tumor necrosis factor-α (TNF-α) after 8 wk and increased interleukin (IL)-10 only after 4 wk with WG compared with RW (P = 0.04) were observed. No significant change in plasma metabolic disease markers over the study period was observed, but a trend toward lower plasma plasminogen activator inhibitor 1 with higher excretion of FA and DHFA in the WG group was found. Fecal FA was associated with baseline low Bifidobacteriales and Bacteroidetes abundances, whereas after WG consumption, it correlated with increased Bacteroidetes and Firmicutes but reduced Clostridium. TNF-α reduction correlated with increased Bacteroides and Lactobacillus. No effect of dietary interventions on anthropometry and body composition was found. Conclusions: WG wheat consumption significantly increased excreted FA and circulating DHFA. Bacterial communities influenced fecal FA and were modified by WG wheat consumption. This trial was registered at clinicaltrials.gov as NCT01293175. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00029165
Volume :
101
Issue :
2
Database :
Complementary Index
Journal :
American Journal of Clinical Nutrition
Publication Type :
Academic Journal
Accession number :
100771887
Full Text :
https://doi.org/10.3945/ajcn.114.088120