Back to Search
Start Over
A Scalable Projective Scaling Algorithm for lp Loss With Convex Penalizations.
- Source :
- IEEE Transactions on Neural Networks & Learning Systems; Feb2015, Vol. 26 Issue 2, p265-276, 12p
- Publication Year :
- 2015
-
Abstract
- This paper presents an accurate, efficient, and scalable algorithm for minimizing a special family of convex functions, which have a lp loss function as an additive component. For this problem, well-known learning algorithms often have well-established results on accuracy and efficiency, but there exists rarely any report on explicit linear scalability with respect to the problem size. The proposed approach starts with developing a second-order learning procedure with iterative descent for general convex penalization functions, and then builds efficient algorithms for a restricted family of functions, which satisfy the Karmarkar's projective scaling condition. Under this condition, a light weight, scalable message passing algorithm (MPA) is further developed by constructing a series of simpler equivalent problems. The proposed MPA is intrinsically scalable because it only involves matrix-vector multiplication and avoids matrix inversion operations. The MPA is proven to be globally convergent for convex formulations; for nonconvex situations, it converges to a stationary point. The accuracy, efficiency, scalability, and applicability of the proposed method are verified through extensive experiments on sparse signal recovery, face image classification, and over-complete dictionary learning problems. [ABSTRACT FROM PUBLISHER]
Details
- Language :
- English
- ISSN :
- 2162237X
- Volume :
- 26
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- IEEE Transactions on Neural Networks & Learning Systems
- Publication Type :
- Periodical
- Accession number :
- 100565442
- Full Text :
- https://doi.org/10.1109/TNNLS.2014.2314129