Back to Search Start Over

Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space.

Authors :
Ruiwei Xu
Linfen Cao
Source :
Abstract & Applied Analysis; 2014, p1-9, 9p
Publication Year :
2014

Abstract

Let f(x) be a smooth strictly convex solution of det(∂² f /∂x<subscript>i</subscript>∂x<subscript>i</subscript>) = exp {(1/2) Σ<subscript>i=1</subscript><superscript>n</superscript> x<subscript>i</subscript> (∂f /∂x<subscript>i</subscript>) - f} defined on a domain Ω ⊂ ℝ<superscript>n</superscript>; then the graph M<subscript>∇f</subscript> of ∇f is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space ℝ<subscript>n</subscript><superscript>2n</superscript> with the indefinite metric Σdx<subscript>i</subscript>dy<subscript>i</subscript>. In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graph M<subscript>∇f</subscript> is complete in ℝ<subscript>n</subscript><superscript>2n</superscript> and passes through the origin then it is flat. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10853375
Database :
Complementary Index
Journal :
Abstract & Applied Analysis
Publication Type :
Academic Journal
Accession number :
100532907
Full Text :
https://doi.org/10.1155/2014/196751