Back to Search
Start Over
Complete Self-Shrinking Solutions for Lagrangian Mean Curvature Flow in Pseudo-Euclidean Space.
- Source :
- Abstract & Applied Analysis; 2014, p1-9, 9p
- Publication Year :
- 2014
-
Abstract
- Let f(x) be a smooth strictly convex solution of det(∂² f /∂x<subscript>i</subscript>∂x<subscript>i</subscript>) = exp {(1/2) Σ<subscript>i=1</subscript><superscript>n</superscript> x<subscript>i</subscript> (∂f /∂x<subscript>i</subscript>) - f} defined on a domain Ω ⊂ ℝ<superscript>n</superscript>; then the graph M<subscript>∇f</subscript> of ∇f is a space-like self-shrinker of mean curvature flow in Pseudo-Euclidean space ℝ<subscript>n</subscript><superscript>2n</superscript> with the indefinite metric Σdx<subscript>i</subscript>dy<subscript>i</subscript>. In this paper, we prove a Bernstein theorem for complete self-shrinkers. As a corollary, we obtain if the Lagrangian graph M<subscript>∇f</subscript> is complete in ℝ<subscript>n</subscript><superscript>2n</superscript> and passes through the origin then it is flat. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 10853375
- Database :
- Complementary Index
- Journal :
- Abstract & Applied Analysis
- Publication Type :
- Academic Journal
- Accession number :
- 100532907
- Full Text :
- https://doi.org/10.1155/2014/196751