Back to Search
Start Over
Occurrence of pristine aerosol environments on a polluted planet.
- Source :
- Proceedings of the National Academy of Sciences of the United States of America; 12/30/2014, Vol. 111 Issue 52, p18466-18471, 6p
- Publication Year :
- 2014
-
Abstract
- Natural aerosols define a preindustrial baseline state from which the magnitude of anthropogenic aerosol effects on climate are calculated and are a major component of the large uncertainty in anthropogenic aerosol-cloud radiative forcing. This uncertainty would be reduced if aerosol environments unperturbed by air pollution could be studied in the present-day atmosphere, but the pervasiveness of air pollution makes identification of unperturbed regions difficult. Here, we use global model simulations to define unperturbed aerosol regions in terms of two measures that compare 1750 and 2000 conditions-the number of days with similar aerosol concentrations and the similarity of the aerosol response to perturbations in model processes and emissions. The analysis shows that the aerosol system in many present-day environments looks and behaves like it did in the preindustrial era. On a global annual mean, unperturbed aerosol regions cover 12% of the Earth (16% of the ocean surface and 2% of the land surface). There is a strong seasonal variation in unperturbed regions of between 4% in August and 27% in January, with the most persistent conditions occurring over the equatorial Pacific. About 90% of unperturbed regions occur in the Southern Hemisphere, but in the Northern Hemisphere, unperturbed conditions are transient and spatially patchy. In cloudy regions with a radiative forcing relative to 1750, model results suggest that unperturbed aerosol conditions could still occur on a small number of days per month. However, these environments are mostly in the Southern Hemisphere, potentially limiting the usefulness in reducing Northern Hemisphere forcing uncertainty. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00278424
- Volume :
- 111
- Issue :
- 52
- Database :
- Complementary Index
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 100269452
- Full Text :
- https://doi.org/10.1073/pnas.1415440111