Back to Search
Start Over
Redundancy of autocrine loops in human osteosarcoma cells.
- Source :
-
International journal of cancer [Int J Cancer] 1999 Feb 09; Vol. 80 (4), pp. 581-8. - Publication Year :
- 1999
-
Abstract
- With the aim of identifying innovative therapeutic strategies for osteosarcoma patients who are refractory to conventional chemotherapy, we analyzed the in vitro effects of the blockage of autocrine circuits. Since the insulin-like growth factor-I receptor (IGF-IR)-mediated loop is relevant to the growth of osteosarcoma, we analyzed the activity of the IGF-IR-blocking antibody alphaIR3 in both sensitive and multidrug-resistant osteosarcoma cell lines. Only limited effects, however, were observed, suggesting the simultaneous existence of other autocrine circuits. Indeed, in a representative panel of 12 human osteosarcoma cell lines, in addition to the IGF-IR-mediated circuit, we demonstrated also a loop mediated by epidermal growth factor receptor as well as the presence of nerve growth factor, low-affinity nerve growth factor receptor as well as tyrosine receptor kinase A in the great majority of osteosarcomas. Therapies based on the inhibition of single circuits may have only limited effects in osteosarcoma, whereas the use of suramin, a drug which, besides other activities, non-selectively interferes with the binding of growth factors to their receptors, appears as a promising alternative, in both sensitive and drug-resistant osteosarcoma cells.
- Subjects :
- Antineoplastic Agents pharmacology
Autocrine Communication drug effects
Becaplermin
Bone Neoplasms drug therapy
Drug Resistance, Multiple
Drug Resistance, Neoplasm
Epidermal Growth Factor metabolism
Humans
Insulin-Like Growth Factor I metabolism
Insulin-Like Growth Factor II metabolism
Nerve Growth Factors metabolism
Osteosarcoma drug therapy
Platelet-Derived Growth Factor metabolism
Proto-Oncogene Proteins c-sis
Receptor, IGF Type 1 metabolism
Suramin pharmacology
Transforming Growth Factor alpha metabolism
Tumor Cells, Cultured
Autocrine Communication physiology
Bone Neoplasms metabolism
Neoplasm Proteins metabolism
Osteosarcoma metabolism
Receptors, Growth Factor metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0020-7136
- Volume :
- 80
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- International journal of cancer
- Publication Type :
- Academic Journal
- Accession number :
- 9935160
- Full Text :
- https://doi.org/10.1002/(sici)1097-0215(19990209)80:4<581::aid-ijc16>3.0.co;2-o