Back to Search Start Over

Induction of vascular smooth muscle cell tenascin-C gene expression by denatured type I collagen is dependent upon a beta3 integrin-mediated mitogen-activated protein kinase pathway and a 122-base pair promoter element.

Authors :
Jones PL
Jones FS
Zhou B
Rabinovitch M
Source :
Journal of cell science [J Cell Sci] 1999 Feb; Vol. 112 ( Pt 4), pp. 435-45.
Publication Year :
1999

Abstract

Tenascin-C is an extracellular matrix glycoprotein, the expression of which is upregulated in remodeling arteries. In previous studies we showed that the presence of tenascin-C alters vascular smooth muscle cell shape and amplifies their proliferative response by promoting growth factor receptor clustering and phosphorylation. Moreover, we demonstrated that denatured type I collagen induces smooth muscle cell tenascin-C protein production via beta3 integrins. In the present study, we examine the pathway by which beta3 integrins stimulate expression of tenascin-C, and define a promoter sequence that is critical for its induction. On native collagen, A10 smooth muscle cells adopt a stellate morphology and produce low levels of tenascin-C mRNA and protein, whereas on denatured collagen they spread extensively and produce high levels of tenascin-C mRNA and protein, which is incorporated into an elaborate extracellular matrix. Increased tenascin-C synthesis on denatured collagen is associated with elevated protein tyrosine phosphorylation, including activation of extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2). beta3 integrin function-blocking antibodies attenuate ERK1/2 activation and tenascin-C protein synthesis. Consistent with these findings, treatment with the specific MEK inhibitor, PD 98059, results in suppression of tenascin-C protein synthesis. To investigate whether beta3 integrin-dependent activation of ERK1/2 regulates the tenascin-C promoter, we transfected A10 cells with a full-length (approx. 4 kb) mouse tenascin-C gene promoter-chloramphenicol acetyltransferse reporter construct and showed that, relative to native collagen, its activity is increased on denatured collagen. Next, to identify regions of the promoter involved, we examined a series of tenascin-C promoter constructs with 5' deletions and showed that denatured collagen-dependent promoter activity was retained by a 122-base pair element, located -43 to -165 bp upstream of the RNA start site. Activation of this element was suppressed either by blocking beta3 integrins, or by preventing ERK1/2 activation. These observations demonstrate that smooth muscle cell binding to beta3 integrins activates the mitogen activated protein kinase pathway, which is required for the induction of tenascin-C gene expression via a potential extracellular matrix response element in the tenascin-C gene promoter. Our data suggest a mechanism by which remodeling of type I collagen modulates tenascin-C gene expression via a beta3 integrin-mediated signaling pathway, and as such represents a paradigm for vascular development and disease whereby smooth muscle cells respond to perturbations in extracellular matrix composition by altering their phenotype and patterns of gene expression.

Details

Language :
English
ISSN :
0021-9533
Volume :
112 ( Pt 4)
Database :
MEDLINE
Journal :
Journal of cell science
Publication Type :
Academic Journal
Accession number :
9914156
Full Text :
https://doi.org/10.1242/jcs.112.4.435