Back to Search
Start Over
Neuropilin-1 is a placenta growth factor-2 receptor.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 1998 Aug 28; Vol. 273 (35), pp. 22272-8. - Publication Year :
- 1998
-
Abstract
- Placenta growth factor (PlGF) belongs to the family of vascular endothelial growth factors (VEGFs). It binds to the flt-1 VEGF receptor but not to the KDR/flk-1 receptor which is thought to mediate most of the angiogenic and proliferative effects of VEGF. Three PlGF isoforms are produced by alternative splicing. PlGF-1 and PlGF-3 differ from PlGF-2 since they lack the exon 6 encoded peptide which bestows upon PlGF-2 its heparin binding properties. Cross-linking experiments revealed that 125I-PlGF-2 binds to two endothelial cell surface receptors in a heparin dependent fashion. The binding of 125I-PlGF-2 to these receptors was inhibited by an excess of PlGF-2 and by the 165-amino acid form of VEGF (VEGF165), but not at all by VEGF121 and very marginally if at all by PlGF-1. The apparent molecular weight and the binding characteristics of these receptors correspond to those of the recently identified VEGF165 specific receptor neuropilin-1, and we therefore conclude that neuropilin-1 is a receptor for PlGF-2. The binding of 125I-PlGF-2 as well as the binding of 125I-VEGF165 to these receptors was inhibited by a synthetic peptide derived from exon 6 of PlGF. Furthermore, the binding of 125I-PlGF-2, but not that of 125I-VEGF165, was also inhibited by a synthetic peptide derived from exon 7 of PlGF. These observations indicate that the peptides encoded by these exons probably participate in the formation of the domain which mediates the binding of PlGF-2 to these receptors. We have also determined, using chemically modified heparin species, that the presence of sulfate moieties on the glucosamine-O-6 and on the iduronic acid-O-2 groups of heparin was required for the potentiation of 125I-PlGF-2 binding to these receptors. To determine if PlGF-2 is able to induce biological responses that are not induced by PlGF-1, we compared the effects of PlGF-1 and PlGF-2 on the migration and proliferation of endothelial cells. Both PlGF forms induced migration of endothelial cells. However, there was no quantitative difference between the response to PlGF-2 and the response to PlGF-1. Furthermore, neither PlGF-1 nor PlGF-2 had any effect upon the proliferation of the endothelial cells.
- Subjects :
- Animals
Cattle
Cell Division
Endothelium, Vascular cytology
Endothelium, Vascular metabolism
Exons
Glucosamine chemistry
Heparin chemistry
Heparin metabolism
Humans
Iduronic Acid chemistry
Membrane Proteins
Neuropilin-1
Peptides pharmacology
Protein Binding
Proteins antagonists & inhibitors
Proteins genetics
Receptors, Cell Surface metabolism
Nerve Tissue Proteins metabolism
Proteins metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 273
- Issue :
- 35
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 9712843
- Full Text :
- https://doi.org/10.1074/jbc.273.35.22272