Back to Search Start Over

A hairpin conformation for the 3' overhang of Oxytricha nova telomeric DNA.

Authors :
Laporte L
Thomas GJ Jr
Source :
Journal of molecular biology [J Mol Biol] 1998 Aug 14; Vol. 281 (2), pp. 261-70.
Publication Year :
1998

Abstract

The solution secondary structure of the Oxytricha nova telomeric 3' overhang, d(T4G4)2, has been investigated by Raman spectroscopy, hydrogen-deuterium exchange kinetics and gel electrophoresis. The electrophoretic mobility of d(T4G4)2 in non-denaturing gels indicates a highly compact conformation, consistent with a hairpin secondary structure. Raman markers show that the d(T4G4)2 hairpin contains equal numbers of C2'-endo/syn and C2'-endo/anti deoxyguanosine conformers, as well as G.G base-pairs of the Hoogsteen type. The hydrogen-deuterium exchange kinetics of d(T4G4)2, monitored by time-resolved Raman spectroscopy, reveal two kinetically distinct classes of guanine imino (N1H) protons. The more slowly exchanging fraction (kN1H(1)=4.6x10(-3) min-1), which represents 50% of N1H groups, is attributed to Hoogsteen-paired residues. The more rapidly exchanging fraction (kN1H(2)>/=0.3 min-1) is attributable to solvent-exposed residues. Raman dynamic probe of the kinetics of guanine C8H-->C8(2)H exchange in d(T4G4)2 reveals modest retardation vis-à-vis dGMP, which rules out quadruplex formation by the telomeric repeat and confirms an ordered secondary structure consistent with a Hoogsteen-paired hairpin. Similar Raman, hydrogen-isotope exchange and electrophoretic mobility experiments on the related telomeric model, dT6(T4G4)2, also reveal a hairpin stabilized by Hoogsteen G.G pairs. Presence of the 5' thymidine tail preceding the Oxytricha telomeric repeat has no apparent effect on the hairpin secondary structure. We propose a molecular model for the hairpin conformation of the Oxytricha nova telomeric repeat and consider its possible roles in mechanisms of telomeric DNA interaction in vitro and telomere function in vivo.<br /> (Copyright 1998 Academic Press)

Details

Language :
English
ISSN :
0022-2836
Volume :
281
Issue :
2
Database :
MEDLINE
Journal :
Journal of molecular biology
Publication Type :
Academic Journal
Accession number :
9698547
Full Text :
https://doi.org/10.1006/jmbi.1998.1938