Back to Search
Start Over
Induction of transforming growth factor-beta receptor type II expression in estrogen receptor-positive breast cancer cells through SP1 activation by 5-aza-2'-deoxycytidine.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 1998 Jun 26; Vol. 273 (26), pp. 16527-34. - Publication Year :
- 1998
-
Abstract
- Previous studies suggest that estrogen receptor-positive (ER+) breast cancer cells acquire resistance to transforming growth factor-beta (TGF-beta) because of reduced expression levels of TGF-beta receptor type II (RII). We now report that treatment of ER+ breast cancer cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-2'-dC) leads to accumulation of RII transcript and protein in three different cell lines. RII induction restored TGF-beta response in MCF-7L breast cancer cells as indicated by the enhanced activity of a TGF-beta responsive promoter-reporter construct (p3TP-Lux). A transiently transfected RII promoter-reporter element (RII-chloramphenicol acetyltransferase) showed an increase in activity in the 5-aza-2'-dC-treated MCF-7L cells compared with untreated cells, suggesting the activation of a transactivator of RII transcription. Using electrophoretic mobility shift assays, the enhanced binding of proteins from 5-aza-2'-dC-treated MCF-7L nuclear extracts to radiolabeled Sp1 oligonucleotides was demonstrated. An RII promoter-chloramphenicol acetyltransferase construct containing a mutation in the Sp1 site was not expressed in the 5-aza-2'-dC-treated MCF-7L cells, further demonstrating that induction of Sp1 activity by 5-aza-2'-dC in the MCF-7L cells was critical to RII expression. Northern analysis indicated that 5-aza-2'-dC treatment did not affect the Sp1 transcript levels. Western blot analysis revealed an increase of Sp1 protein in the 5-aza-2'-dC-treated MCF-7L cells, but there was no change in the c-Jun levels. Studies after cyclohexamide treatment suggested an increase in the Sp1 protein stability from the 5-aza-2'-dC-treated MCF-7L extracts compared with untreated control extracts. These results indicate that the transcriptional repression of RII in the ER+ breast cancer cells is caused by suboptimal activity of Sp1, whereas treatment with 5-aza-2'-dC stabilizes the protein thus increasing steady-state Sp1 levels and thereby leads to enhanced RII transcription and subsequent restoration of TGF-beta sensitivity.
- Subjects :
- Azacitidine pharmacology
Base Sequence
Breast Neoplasms chemistry
Decitabine
Female
Humans
Insulin-Like Growth Factor II genetics
Molecular Sequence Data
Mutation
Promoter Regions, Genetic
Protein Serine-Threonine Kinases biosynthesis
Receptor, Transforming Growth Factor-beta Type I
Receptor, Transforming Growth Factor-beta Type II
Receptors, Transforming Growth Factor beta metabolism
Repressor Proteins metabolism
Sp1 Transcription Factor genetics
Tumor Cells, Cultured
Activin Receptors, Type I
Antimetabolites, Antineoplastic pharmacology
Azacitidine analogs & derivatives
Breast Neoplasms metabolism
Protein Serine-Threonine Kinases metabolism
Receptors, Estrogen analysis
Receptors, Transforming Growth Factor beta biosynthesis
Sp1 Transcription Factor metabolism
Transforming Growth Factor beta metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 0021-9258
- Volume :
- 273
- Issue :
- 26
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 9632722
- Full Text :
- https://doi.org/10.1074/jbc.273.26.16527