Back to Search Start Over

The key to the antiestrogenic mechanism of raloxifene is amino acid 351 (aspartate) in the estrogen receptor.

Authors :
Levenson AS
Jordan VC
Source :
Cancer research [Cancer Res] 1998 May 01; Vol. 58 (9), pp. 1872-5.
Publication Year :
1998

Abstract

The crystallization of the ligand-binding domain (LBD) of the estrogen receptor (ER) with 17beta-estradiol and raloxifene [A. M. Brzozowski et al., Nature (Lond.), 389: 753-758, 1997] now provides a molecular basis for the biological activity of complexes as either agonists or antagonists. It is well established that the critical structural feature of antiestrogens is a correctly positioned alkylaminoethoxy side chain. The X-ray crystallography clearly shows that the alkylaminoethoxy side chain of raloxifene causes a specific and inappropriate molecular perturbation of the LBD and that the nitrogen in the side chain must hydrogen bond with aspartate 351 in the LBD of ER. We previously identified and characterized a naturally occurring mutation in the ER from a tamoxifen-stimulated transplantable human breast tumor line. The mutation is at AA351 of LBD, where the aspartate is changed to tyrosine (Asp351Tyr). In this report, we compared and contrasted the pharmacology of raloxifene to block or induce E2-stimulated increase in TGF-alpha mRNA in stable transfectants of ER-negative human breast cancer cells with the cDNAs from wild-type, mutant-amino acid (AA) 400 ER and mutant-AA 351 ER. Our results show that the mutation at AA 351 that replaces aspartate by tyrosine specifically changes the pharmacology of raloxifene from an antiestrogen to an estrogen. By contrast, a mutation at AA 400 does not, and the antiestrogenic properties of raloxifene are retained. These data and the fact that the nitrogen in the side chain must specifically interact with aspartate 351 makes this the key to the antiestrogenic activity of raloxifene.

Details

Language :
English
ISSN :
0008-5472
Volume :
58
Issue :
9
Database :
MEDLINE
Journal :
Cancer research
Publication Type :
Academic Journal
Accession number :
9581827