Back to Search Start Over

Emodin-induced muscle contraction of mouse diaphragm and the involvement of Ca2+ influx and Ca2+ release from sarcoplasmic reticulum.

Authors :
Cheng YW
Kang JJ
Source :
British journal of pharmacology [Br J Pharmacol] 1998 Mar; Vol. 123 (5), pp. 815-20.
Publication Year :
1998

Abstract

1. The effects on skeletal muscle of emodin, an anthraquinone, were studied in the mouse isolated diaphragm and sarcoplasmic reticulum (SR) membrane vesicles. 2. Emodin dose-dependently caused muscle contracture, simultaneously depressing twitch amplitude. Neither tubocurarine nor tetrodotoxin blocked the contraction suggesting that it was caused myogenically. 3. The contraction induced by emodin persisted in a Ca2+ free medium with a slight reduction in the maximal force of contraction. The contraction induced by emodin in the Ca2+ free medium was completely blocked when the internal Ca2+ pool of the muscle was depleted by ryanodine. These data suggest that the contraction caused by emodin is due to the release of Ca2+ from the intracellular ryanodine-sensitive pool. 4. In contrast to the effect seen in the Ca2+ free medium, emodin induced a small but consisted contraction in the ryanodine-treated muscle in Krebs medium. The contraction was blocked in the presence of dithiothreitol and was partially blocked by nifedipine, suggesting that oxidation of a sulphhydryl group on the external site of dihydropyridine receptor is involved. 5. Emodin dose-dependently increased Ca2+ release from actively loaded SR vesicles and this effect was blocked by ruthenium red, a specific Ca2+ release channel blocker, and the thiol reducing agent, DTT, suggesting that emodin induced Ca2+ release through oxidation of the critical SH of the ryanodine receptor. 6. [3H]-ryanodine binding was dose-dependently potentiated by emodin in a biphasic manner. The degree of potentiation of ryanodine binding by emodin increased dose-dependently at concentrations up to 10 microM but decreased at higher concentrations of 10-100 microM. 7. These data suggest that muscle contraction induced by emodin is due to Ca2+ release from the SR of skeletal muscle, as a result of oxidation of the ryanodine receptor and influx of extracellular Ca2+ through voltage-dependent Ca2+ channels of the plasma membrane.

Details

Language :
English
ISSN :
0007-1188
Volume :
123
Issue :
5
Database :
MEDLINE
Journal :
British journal of pharmacology
Publication Type :
Academic Journal
Accession number :
9535008
Full Text :
https://doi.org/10.1038/sj.bjp.0701677