Back to Search
Start Over
Adaptations of vertebrate neurons to hypoxia and anoxia: maintaining critical Ca2+ concentrations.
- Source :
-
The Journal of experimental biology [J Exp Biol] 1998 Apr; Vol. 201 (Pt 8), pp. 1141-52. - Publication Year :
- 1998
-
Abstract
- Down-regulation of ion channel activity ('channel arrest'), which aids in preserving critical ion gradients in concert with greatly diminished energy production, is one important strategy by which anoxia-tolerant neurons adapt to O2 shortage. Channel arrest results in the elimination of action potentials and neurotransmission and also decreases the need for ion transport, which normally requires a large energy expenditure. Important targets of this down-regulation may be channels in which activity would otherwise result in the toxic increases in intracellular [Ca2+] characteristic of anoxia-sensitive mammalian neurons. In turtles, Na+ channels and the Ca2+-permeable ion channel of the N-methyl-d-aspartate (NMDA)-type glutamate receptor undergo down-regulation during anoxia. Inactivation of NMDA receptors during hypoxia occurs by a variety of mechanisms, including alterations in the phosphorylation state of ion channel subunits, Ca2+-dependent second messenger activation, changes in Ca2+-dependent polymerization/depolymerization of actin to postsynaptic receptors and activation of other G-protein-coupled receptors. Release of inhibitory neurotransmitters (e.g. gamma-aminobutyrate) and neuromodulators (e.g. adenosine) into the brain extracellular fluids may play an important role in the down-regulation of these and other types of ion channels.
Details
- Language :
- English
- ISSN :
- 0022-0949
- Volume :
- 201
- Issue :
- Pt 8
- Database :
- MEDLINE
- Journal :
- The Journal of experimental biology
- Publication Type :
- Academic Journal
- Accession number :
- 9510526
- Full Text :
- https://doi.org/10.1242/jeb.201.8.1141